Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotoxicol Teratol ; 63: 9-13, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28811141

ABSTRACT

In recent years, the abuse of synthetic cathinones or 'bath salts' has become a major public health concern. Although these compounds were initially sold legally and labeled "not for human consumption", the 'bath salts' are psychostimulants, with similar structures and pharmacologic mechanisms to cocaine, the amphetamines, and 3,4 methylendioxymethamphetamine (MDMA, Molly, or Ecstasy). The reported use of these substances by women of child-bearing age highlights the necessity of studies seeking to delineate risks of prenatal exposure. Three popular drugs of this type are methylone, mephedrone, and 3, 4-methylenedioxypyrovalerone (MDPV). Unfortunately, there is currently no information available on the teratogenicity of these compounds, or of the extent to which they cross the placenta. As such, the purpose of this study was to examine the pharmacokinetic profile of the 'bath salts' in a pregnancy model. Pregnant mice (E17.5 gestation) were injected intraperitoneally with a cocktail of 5mg/kg methylone, 10mg/kg mephedrone, and 3mg/kg (MDPV) dissolved in sterile saline. Maternal brain, maternal plasma, placenta, and fetal brain were collected at 30s, 1min, 5min, 10min, 15min, 30min, 1h, 2h, 4h, and 8h following injection. Methylone, mephedrone, and MDPV were extracted from tissue by solid phase extraction, and concentrations were determined using a previously validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Interestingly, all 3 cathinones reached measurable concentrations in the placenta, as well as the fetal brain; in fact, for MDPV, the maximal concentration (Cmax) was highest in fetal brain, while mephedrone's highest Cmax value was achieved in placenta. Additionally, the total drug exposure for all 3 compounds (as represented by area under the curve, AUC) was higher in fetal matrices (placenta and fetal brain) than in maternal matrices (maternal brain and plasma), and the half-lives for the drugs were longer. Given the extensive presence of methylone, mephedrone, and MDPV in the fetal brain following prenatal exposure, fetal risk is definitely a concern. As there are currently no prenatal studies available on the teratogenicity of these agents, pregnant patients should be informed about the potential risks that these substances may have.


Subject(s)
Alkaloids/pharmacokinetics , Brain/drug effects , Central Nervous System Stimulants/pharmacokinetics , Animals , Brain/growth & development , Female , Methamphetamine/analogs & derivatives , Methamphetamine/pharmacokinetics , Mice , Pregnancy , Pyrrolidines/pharmacology
2.
Neurotoxicol Teratol ; 54: 1-4, 2016.
Article in English | MEDLINE | ID: mdl-26795754

ABSTRACT

The purpose of this study was to quantify the amounts of the d- and l-threo enantiomers of methylphenidate in maternal plasma, placenta, and maternal and fetal brain tissue following prenatal exposure and to establish a pharmacokinetic profile for MPH during pregnancy. Due to increasing rates of use of methylphenidate amongst females of childbearing age, it is important to understand the extent of exposure to the fetus. Briefly, pregnant mice were injected with 5 mg/kg methylphenidate at 18 days gestation, and tissue was collected 1, 5, 10, 30, 60, and 120 min following injection. Methylphenidate was extracted from tissue via solid phase extraction, and concentrations were determined using liquid chromatography-mass spectrometry (LC-MS). Because methylphenidate is administered as a racemic mixture of d- and l-threo enantiomers and the d-enantiomer is more pharmacologically active, the enantiomers were quantified separately. Interestingly, we found that methylphenidate does cross the placenta and enter the fetal brain. Although the highest concentrations were achieved in maternal brain, the concentrations of d- and l-methylphenidate in fetal brain were comparable to those of maternal plasma. Additionally, both d- and l-methylphenidate had longer half-lives in placenta than in maternal or fetal brain. Interestingly, there was a bimodal peak in maternal brain concentrations, at 5 min and again at 60 min, which was not observed in maternal plasma. Finally, the total exposure (as represented by area under the curve) was statistically significantly higher for the active d-enantiomer than the l-enantiomer in maternal brain tissue. In conclusion, methylphenidate crosses the placenta and reaches measurable concentrations in fetal brain. Although long-term behavioral and developmental studies are needed to determine specific outcomes of prenatal exposure, discussion with pregnant patients on the potential risks of methylphenidate exposure is warranted.


Subject(s)
Central Nervous System Stimulants/pharmacokinetics , Maternal-Fetal Exchange/drug effects , Methylphenidate/pharmacokinetics , Animals , Brain/drug effects , Brain/embryology , Central Nervous System Stimulants/toxicity , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Female , Maternal-Fetal Exchange/physiology , Methylphenidate/toxicity , Mice , Placenta/drug effects , Placenta/metabolism , Pregnancy , Statistics, Nonparametric , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...