Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 11(1): 5528, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33110071

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Chem Sci ; 10(27): 6642-6650, 2019 Jul 21.
Article in English | MEDLINE | ID: mdl-31367317

ABSTRACT

As structure defined cutouts of the graphene lattice, nanographene molecules have gained plenty of attention because of their high potential for versatile applications in organic electronics and energy conversion devices and as ideal model systems for the better understanding of intrinsic structure-property correlations of graphenes. In this study, well-defined nanographenes with sp2 carbon networks of different sizes, hexa-peri-hexabenzocoronene (HBC) and its rectangularly π-extended version, a short graphene nanoribbon (GNR), have been covalently functionalized with photoactive porphyrin molecules. On the basis of their spectroscopic studies, the photodynamics of the porphyrin-linked nanographenes was found to be influenced substantially by the size of the nanographenes. Photoexcitation of the porphyrin-HBC linked system led to exclusive energy transfer (EnT) from the first singlet excited state (S1) of the nanographene to the porphyrin, whereas opposite selective EnT occurred from the first and second singlet excited states (S1 and S2) of the porphyrin to the nanographene in the porphyrin-GNR linked system. In particular, ultrafast efficient EnTs from both the S2 and S1 states of the porphyrin to GNR mimic the corresponding ultrafast EnTs from the S2 and S1 states of carotenoids to chlorophylls in light-harvesting systems of natural photosynthesis. Such unique photophysical properties will be useful for the rational design of carbon-based photofunctional nanomaterials for optoelectronics and solar energy conversion devices.

3.
Adv Sci (Weinh) ; 6(4): 1801650, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30828534

ABSTRACT

Liquid chromophores constitute a rare but intriguing class of molecules that are in high demand for the design of luminescent inks, liquid semiconductors, and solar energy storage materials. The most common way to achieve liquid chromophores involves the introduction of long alkyl chains, which, however, significantly reduces the chromophore density. Here, strategy is presented that allows for the preparation of liquid chromophores with a minimal increase in molecular weight, using the important class of perylenes as an example. Two synergistic effects are harnessed: (1) the judicious positioning of short alkyl substituents, and (2) equimolar mixing, which in unison results in a liquid material. A series of 1-alkyl perylene derivatives is synthesized and it is found that short ethyl or butyl chains reduce the melting temperature from 278 °C to as little as 70 °C. Then, two low-melting derivatives are mixed, which results in materials that do not crystallize due to the increased configurational entropy of the system. As a result, liquid chromophores with the lowest reported molecular weight increase compared to the neat chromophore are obtained. The mixing strategy is readily applicable to other π-conjugated systems and, hence, promises to yield a wide range of low molecular weight liquid chromophores.

4.
Nat Commun ; 9(1): 2273, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29891958

ABSTRACT

Strong coupling between light and matter leads to the spontaneous formation of hybrid light-matter states, having different energies than the uncoupled states. This opens up for new ways of modifying the energy landscape of molecules without changing their atoms or structure. Heavy metal-free organic light emitting diodes (OLED) use reversed intersystem crossing (RISC) to harvest light from excited triplet states. This is a slow process, thus increasing the rate of RISC could potentially enhance OLED performance. Here we demonstrate selective coupling of the excited singlet state of Erythrosine B without perturbing the energy level of a nearby triplet state. The coupling reduces the triplet-singlet energy gap, leading to a four-time enhancement of the triplet decay rate, most likely due to an enhanced rate of RISC. Furthermore, we anticipate that strong coupling can be used to create energy-inverted molecular systems having a singlet ground and lowest excited state.

5.
Bioconjug Chem ; 28(5): 1363-1370, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28402621

ABSTRACT

Altered lipid metabolism and extensive lipid storage in cells have been associated with various medical disorders, including cancer. The development of fluorescent probes that specifically accumulate in lipid deposits is therefore of great interest in order to study pathological processes that are linked to dysregulated lipogenesis. In the present study, we present a small fluorescent benzothiadiazole dye that specifically stains lipid droplets in living and fixated cells. The photophysical characterization of the probe revealed strong solvatochromic behavior, large Stokes shifts, and high fluorescent quantum yields in hydrophobic solvents. In addition, the fluorophore exhibits a nontoxic profile and a high signal-to-noise ratio in cells (i.e., lipid droplets vs cytosol), which make it an excellent candidate for studying lipid biology using confocal fluorescent microscopy.


Subject(s)
Fluorescent Dyes/chemistry , Image Processing, Computer-Assisted/methods , Lipid Droplets/chemistry , Thiadiazoles/chemistry , Humans , Signal-To-Noise Ratio , Spectrometry, Fluorescence
6.
Langmuir ; 31(3): 944-52, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25547810

ABSTRACT

The self-assembled monolayer (SAM) technique was employed to fabricate a two-layer donor-acceptor film on the surface of TiO2. The approach is based on using donor and acceptor compounds with anchoring groups of different lengths. The acceptor, a fullerene derivative, has a carboxyl anchor attached to the fullerene moiety via a short linker that places the fullerene close to the surface. The donor, a porphyrin derivative, is equipped with a long linker that can penetrate between the fullerenes and keep porphyrin on top of the fullerene layer. The two-layer fullerene-porphyrin structures were deposited on a mesoporous film of TiO2 nanoparticles by immersing the TiO2 film sequentially into fullerene and porphyrin solutions. Transient absorption spectroscopy studies of the samples revealed that after the selective photoexcitation of porphyrin a fast (<5 ps) intermolecular electron transfer (ET) takes place from porphyrin to the fullerene layer, which confirms the formation of the interlayer donor-acceptor interface. Furthermore, in the second step of ET the fullerene anions donate electrons to the TiO2 nanoparticles. The latter reaction is relatively slow with an average time constant of 230 ps. It involves roughly half of the primary generated charges, and the second half relaxes by the interlayer charge recombination. The resulting state with a porphyrin cation and electron in TiO2 has an extremely long lifetime and recombines with an average time constant of 23 ms.

7.
J Phys Chem A ; 118(8): 1420-9, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24495002

ABSTRACT

In this study we have explored the influence of mutual position of chlorin electron donor and fullerene C60 electron acceptor on photoinduced electron transfer. Two zinc-chlorin-aza-[18]crown-6 compounds and three pyrrolidino[60]fullerenes with alkyl aminium and varying coordinative moieties were synthesized and used for self-assembling of a set of complexes via two-point binding. The aza[18]crown6 moieties were connected to chlorins via amide linker either at 13(4) or 17(4) position, hence, being attached on different sides of the chlorin plane. Furthermore, in the former case, the linker holds the crown closely spaced, whereas, in the latter, the linker gives more space and conformational freedom for the crown with respect to the chlorin macrocycle. The coordinative moieties at fullerene site, 3-pyridine, 4-pyridine, and 3-furan, were built by utilizing the Prato reaction. The two-point binding drove the molecules into specific complex formation by self-assembling; aminium ion was chelated by crown ether, while zinc moiety of chlorin was coordinated by pyridine and furan. Such pairing resulted in distinct supramolecular chlorin-fullerene dyads with defined distance and orientation. The performed computational studies at DFT level in solution, with TPSS-D3/def2-TZVP//def2-SVP, indicated different geometries and binding energies for the self-assembling complexes. Notably, the computations pointed out that for all the studied complexes, the donor-acceptor distances and binding energies were dictated by chirality of pyrrolidino ring at C60. The selective excitation of chlorin chromophore revealed efficient emission quenching in all dyads. The ultrafast spectroscopy studies suggested a fast and efficient photoinduced charge transfer in the dyads. The lifetimes of the charge separated states range from 55 to 187 ps in o-dichlorobenzene and from 14 to 60 ps in benzonitrile. Expectedly, the electron transfer rate was found to be critically dependent on the donor-acceptor distance; additionally, the mutual orientation of these entities was found to have significant contribution on the rate.


Subject(s)
Chlorophyll/chemistry , Crown Ethers/chemistry , Electrons , Fullerenes/chemistry , Chlorobenzenes/chemistry , Electron Transport , Kinetics , Metalloporphyrins/chemistry , Pyridines/chemistry , Static Electricity , Thermodynamics
8.
Inorg Chem ; 52(17): 9761-73, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23941685

ABSTRACT

Three new perylene diimide (PDI)-based ligands have been synthesized by the covalent attachment of dipyrido[a,c]phenazine moiety to one of the bay-positions of PDI, while the second position has been substituted with either a 4-tert-butylphenoxy or a pyrrolidinyl group to obtain two types of chromophores, Ph-PDI and Py-PDI, respectively, with distinct properties. In the case of Py-PDI, the resultant 1,7- and 1,6-regioisomers have been successfully separated by column chromatography and characterized by (1)H NMR spectroscopy. The ligands have been employed to prepare donor-acceptor-based ensembles incorporating the covalently linked PDI and Ru(II) polypyridine complex as the acting chromophores. A comprehensive study of the excited-state photodynamics of the ensembles has been performed by means of electrochemical and steady state and time-resolved spectroscopic methods. Although, in all the three ensembles, the photoexcitation of either chromophore resulted in a long-lived triplet excited state of PDI ((3)PDI) as the final excited state, the photochemical reactions leading to the triplet states were found to be essentially different for the two types of the ensembles. In the case of the Ph-PDI-based ensemble, the excitation of either chromophore leads to the electron transfer from the Ru(II) complex to Ph-PDI, whereas for the Py-PDI-based ensembles, the electron transfer is observed in the opposite direction and only when the Ru(II) complex is excited. The difference in the behavior was rationalized based on electrochemical study of the compounds, which has shown that the Ph-PDI chromophore is a better electron acceptor and the Py-PDI chromophores are relatively better electron donors. This study shows a chemical approach to control the photoreactions in PDI-based dichromophoric ensembles including the possibility to switch the direction of the photoinduced electron transfer.

9.
Chemistry ; 18(14): 4250-7, 2012 Apr 02.
Article in English | MEDLINE | ID: mdl-22374704

ABSTRACT

Chemically converted graphene (CCG) covalently linked with porphyrins has been prepared by a Suzuki coupling reaction between iodophenyl-functionalized CCG and porphyrin boronic ester. The covalently linked CCG-porphyrin composite was designed to possess a short, rigid phenylene spacer between the porphyrin and the CCG. The composite material formed stable dispersions in DMF and the structure was characterized by spectroscopic, thermal, and microscopic measurements. In steady-state photoluminescence spectra, the emission from the porphyrin linked to the CCG was quenched strongly relative to that of the porphyrin reference. Fluorescence lifetime and femtosecond transient absorption measurements of the porphyrin-linked CCG revealed a short-lived porphyrin singlet excited state (38 ps) without yielding the porphyrin radical cation, thereby substantiating the occurrence of energy transfer from the porphyrin excited state to the CCG and subsequent rapid decay of the CCG excited state to the ground state. Consistently, the photocurrent action spectrum of a photoelectrochemical device with a SnO(2) electrode coated with the porphyrin-linked CCG exhibited no photocurrent response from the porphyrin absorption. The results obtained here provide deep insight into the interaction between graphenes and π-conjugated systems in the excited and ground states.

10.
Inorg Chem ; 51(6): 3656-65, 2012 Mar 19.
Article in English | MEDLINE | ID: mdl-22390175

ABSTRACT

A new series of molecular dyads and pentad featuring free-base porphyrin and ruthenium phthalocyanine have been synthesized and characterized. The synthetic strategy involved reacting free-base porphyrin functionalized with one or four entities of phenylimidazole at the meso position of the porphyrin ring with ruthenium carbonyl phthalocyanine followed by chromatographic separation and purification of the products. Excitation transfer in these donor-acceptor polyads (dyad and pentad) is investigated in nonpolar toluene and polar benzonitrile solvents using both steady-state and time-resolved emission techniques. Electrochemical and computational studies suggested that the photoinduced electron transfer is a thermodynamically unfavorable process in nonpolar media but may take place in a polar environment. Selective excitation of the donor, free-base porphyrin entity, resulted in efficient excitation transfer to the acceptor, ruthenium phthalocyanine, and the position of imidazole linkage on the free-base porphyrin could be used to tune the rates of excitation transfer. The singlet excited Ru phthalocyanine thus formed instantly relaxed to the triplet state via intersystem crossing prior to returning to the ground state. Kinetics of energy transfer (k(ENT)) was monitored by performing transient absorption and emission measurements using pump-probe and up-conversion techniques in toluene, respectively, and modeled using a Förster-type energy transfer mechanism. Such studies revealed the experimental k(ENT) values on the order of 10(10)-10(11) s(-1), which readily agreed with the theoretically estimated values. Interestingly, in polar benzonitrile solvent, additional charge transfer interactions in the case of dyads but not in the case of pentad, presumably due to the geometry/orientation consideration, were observed.

11.
J Phys Chem Lett ; 3(4): 478-81, 2012 Feb 16.
Article in English | MEDLINE | ID: mdl-26286050

ABSTRACT

Gold/double-cable copolymer/gold multisegmented nanorods were prepared electrochemically via a template-based method. These "bulk heterojunction" nanorods showed photoconductivity providing us with a platform to study photoinduced charge separation/transport at the nanointerface and begin to think about the rational design of nanoscale solar cells based on such structures.

12.
Photochem Photobiol Sci ; 9(7): 949-59, 2010 Jul 30.
Article in English | MEDLINE | ID: mdl-20485815

ABSTRACT

Photoinduced electron transfer reactions of phthalalocyanine-fullerene dyads, in which donor and acceptor moieties are covalently linked to each other, with one or two malonic linkers, were studied. In the dyads with two linkers, phthalocyanine and fullerene have mutual orientations, face-to-face or face-to-tail, which differ from each other and influence photoinduced electron transfer processes. Quantitative spectroscopic and time-resolved spectroscopic measurements were done in polar and non-polar solvents at room temperature and at several reduced temperatures. The emission spectra of the double-linked dyads were different from that of the reference phthalocyanine showing a shoulder at the red part of the spectrum, emission decays were two-exponential and emission lifetimes depend on monitoring wavelengths. These facts support, for the dyads with two linkers, the formation of an emissive intramolecular exciplex preceding the charge separated state. For these dyads the formation times of the charge separated state, approximately 0.4 ps and 0.8 ps for the face-to-face and face-to-tail isomers, respectively, were independent of temperature and the reaction is considered to be quantum tunneling in nature. The charge recombination times were temperature dependent, but decreased with the decrease of temperature from roughly 1.2 ns at room temperature to 0.7 ns at 190 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...