Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(22): 10194-10206, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38767516

ABSTRACT

We report details on the synthesis and properties of barium praseodymium tungstate, Ba2PrWO6, a double perovskite that has not been synthesized before. Room-temperature (RT) powder X-ray diffraction identified the most probable space group (SG) as monoclinic I2/m, but it was only slightly distorted from the cubic structure. X-ray photoelectron spectroscopy confirmed that the initial (postsynthesis) material contained praseodymium in both 3+ and 4+ charge states. The former (Pr3+) disappeared after exposure to UV light at RT. Photoluminescence studies of Pr3+ revealed that Ba2PrWO6 is an insulator with a band gap exceeding 4.93 eV. Pressure-dependent Raman spectroscopy excluded the possibility of a phase transition up to 20 GPa; however, measurements between 8 and 873 K signified that there might be a change toward the lower symmetry SG below 200 K. Electron paramagnetic resonance spectra revealed the presence of interstitial oxygen which acts as a deep electron trap.

2.
Sensors (Basel) ; 24(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38400228

ABSTRACT

In recent years, portable and wearable personal electronic devices have rapidly developed with increasing mass production and rising energy consumption, creating an energy crisis. Using batteries and supercapacitors with limited lifespans and environmental hazards drives the need to find new, environmentally friendly, and renewable sources. One idea is to harness the energy of human motion and convert it into electrical energy using energy harvesting devices-piezoelectric nanogenerators (PENGs), triboelectric nanogenerators (TENGs) and hybrids. They are characterized by a wide variety of features, such as lightness, flexibility, low cost, richness of materials, and many more. These devices offer the opportunity to use new technologies such as IoT, AI or HMI and create smart self-powered sensors, actuators, and self-powered implantable/wearable devices. This review focuses on recent examples of PENGs, TENGs and hybrid devices for wearable and implantable self-powered systems. The basic mechanisms of operation, micro/nano-scale material selection and manufacturing processes of selected examples are discussed. Current challenges and the outlook for the future of the nanogenerators are also discussed.

4.
Materials (Basel) ; 17(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38203894

ABSTRACT

This article describes the swelling and release mechanisms of paracetamol in polyurethane nanocomposite hydrogels containing Cloisite® 30B (organically modified montmorillonite). The transport mechanism, swelling and release processes of the active substance in nanocomposite matrix were studied using gravimetric and UV-Vis spectroscopic methods. Swelling and release processes depend on the amount of clay nanoparticles in these systems and the degree of crosslinking of PU/PEG/Cloisite® 30B hydrogel nanocomposites. The presence of clay causes, on the one hand, a reduction in free volumes in the polymer matrices, making the swelling process less effective; on the other hand, the high swelling and self-aggregation behavior of Cloisite® 30B and the interactions of paracetamol both with it and with the matrix, cause a change in the transport mechanism from anomalous diffusion to Fickian-like diffusion. A more insightful interpretation of the swelling and release profiles of the active substance was proposed, taking into account the "double swelling" process, barrier effect, and aggregation of clay. It was also proven that in the case of modification of polymer matrices with nanoparticles, the appropriate selection of their concentration is crucial, due to the potential possibility of controlling the swelling and release processes in drug delivery patches.

5.
ACS Omega ; 7(22): 18382-18408, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35694470

ABSTRACT

This comprehensive work showcases two novel, rock-salt-type minerals in the form of amphoteric cerium-tungstate double perovskite and ilmenite powders created via a high-temperature solid-state reaction in inert gases. The presented studies have fundamental meaning and will mainly focus on a detailed synthesis description of undoped structures, researching their possible polymorphism in various conditions and hinting at some nontrivial physicochemical properties like charge transfer for upcoming optical studies after eventual doping with selectively chosen rare-earth ions. The formerly mentioned, targeted A2BB'X6 group of compounds contains mainly divalent alkali cations in the form of XIIA = Ba2+, Ca2+ sharing, here, oxygen-arranged clusters (IIX = O2-) with purposely selected central ions from f-block VIB = Ce4/3+ and d-block VIB' = W4/5/6+ since together they often possess some exotic properties that could be tuned and implemented into futuristic equipment like sensors or energy converters. Techniques like powder XRD, XPS, XAS, EPR, Raman, and FTIR spectroscopies alongside DSC and TG were involved with an intent to thoroughly describe any possible changes within these materials. Mainly, to have a full prospect of any desirable or undesirable phenomena before diving into more complicated subjects like: energy or charge transfer in low temperatures; to reveal whether or not the huge angular tilting generates large enough dislocations within the material's unit cell to change its initial properties; or if temperature and pressure stimuli are responsible for any phase transitions and eventual, irreversible decomposition.

6.
Materials (Basel) ; 14(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34885377

ABSTRACT

Smart materials are much discussed in the current research scenario. The shape memory effect is one of the most fascinating occurrences in smart materials, both in terms of the phenomenon and its applications. Many metal alloys and polymers exhibit the shape memory effect (SME). Shape memory properties of elastomers, such as rubbers, polyurethanes, and other elastomers, are discussed in depth in this paper. The theory, factors impacting, and key uses of SME elastomers are all covered in this article. SME has been observed in a variety of elastomers and composites. Shape fixity and recovery rate are normally analysed through thermomechanical cycle studies to understand the effectiveness of SMEs. Polymer properties such as chain length, and the inclusion of fillers, such as clays, nanoparticles, and second phase polymers, will have a direct influence on the shape memory effect. The article discusses these aspects in a simple and concise manner.

7.
Materials (Basel) ; 11(1)2018 Jan 06.
Article in English | MEDLINE | ID: mdl-29316638

ABSTRACT

Polyurethane/graphene nanocomposites were synthesized using commercial thermoplastic polyurethane (TPU, Apilon 52DE55), and two types of graphene derivatives: graphene nanoplatelets (GNP) and reduced graphene oxide (RGO). Fourier Transformation Infrared Spectroscopy Fourier Transformation Infrared Spectroscopy (FTIR) spectroscopy, TEM, and SEM microscopy and XRD techniques were used to chemically and structurally characterize GNP and RGO nanofillers. The properties of the new TPU nanocomposite materials were studied using thermal analysis techniques (Dynamical Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TG)) to describe the influence of graphene nanofillers on polyurethane matrix. Our investigation describes the comparison of two types of graphene derivatives, commercial one (GNP) and synthesized (RGO) on thermoplastic polyurethanes. These nanofillers provides opportunities to achieve compatibility with the TPU matrix. The property enhancements are attributed commonly to high aspect ratio of graphene nanoplatelets and filler-polymer interactions at the interface. The obtained nanocomposites exhibit higher thermal and mechanical properties due to the good dispersion of both nanofillers into TPU matrix. It was found that the addition of 2 wt % of the nanofiller could lead to a significant reinforcement effect on the TPU matrix. Also, with high content of nanofiller (GNP and RGO), the Payne effect was observed.

8.
Materials (Basel) ; 10(9)2017 Sep 14.
Article in English | MEDLINE | ID: mdl-28906445

ABSTRACT

Intelligent materials, such as memory shape polymers, have attracted considerable attention due to wide range of possible applications. Currently, intensive research is underway, in matters of obtaining memory shape materials that can be actuated via inductive methods, for example with help of magnetic field. In this work, an attempt was made to develop a new polymer composite-polyurethane modified with graphene nanoplates and ferromagnetic iron oxides-with improved mechanical properties and introduced magnetic and memory shape properties. Based on the conducted literature review, gathered data were compared to the results of similar materials. Obtained materials were tested for their thermal, rheological, mechanical and shape memory properties. Structure of both fillers and composites were also analyzed using various spectroscopic methods. The addition of fillers to the polyurethane matrix improved the mechanical and shape memory properties, without having a noticeable impact on thermal properties. As it was expected, the high content of fillers caused a significant change in viscosity of filled prepolymers (during the synthesis stage). Each of the studied composites showed better mechanical properties than the unmodified polyurethanes. The addition of magnetic particles introduced additional properties to the composite, which could significantly expand the functionality of the materials developed in this work.

9.
J Pharm Biomed Anal ; 98: 113-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24905292

ABSTRACT

The process of the photo-excitation of ranitidine hydrochloride (RAN) in a solid state makes visible changes to its colour and generates an unpleasant odour. The purpose of the present study was to observe the protective effects of ß-cyclodextrin (CD) complexation as well as the effect of the mixture of two stoichiometries 1:1 and 1:2 (RAN:CD, IC) on the photostability of samples in a solid state. Samples of inclusion complexes (IC) and physical mixtures (PM) were prepared and irradiated for 48h in a Suntest CPS+ chamber. Irradiated samples were analyzed using nuclear magnetic resonance ((1)H NMR), infrared spectroscopy (FT-IR), the differential scanning calorimetry method (DSC) and thermogravimetry analysis (TGA). Volatiles were monitored with the use of headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The protective effect of CD was noticed with respect to IC, and also PM. Achieved photostabilization of complexed RAN against photodegradation could be explained due to either the inclusion of the furan part of RAN into the CD cavity as shown by the (1)H NMR ROESY (rotation frame nuclear Overhauser effect spectroscopy) spectrum or the screening effect of CD. FT-IR spectra, DSC curves and microscope images of irradiated samples of protected RAN did not indicate any physical changes, such as phase transfer.


Subject(s)
Ranitidine/chemistry , beta-Cyclodextrins/chemistry , Calorimetry, Differential Scanning/methods , Gas Chromatography-Mass Spectrometry/methods , Magnetic Resonance Spectroscopy/methods , Photolysis , Spectrophotometry, Infrared/methods , Thermogravimetry/methods
10.
Clin Biomech (Bristol, Avon) ; 26(4): 415-8, 2011 May.
Article in English | MEDLINE | ID: mdl-21215500

ABSTRACT

BACKGROUND: This study compared the maximum load, stress, elongation at failure and the mode of failure of three kinds of tendons most frequently used for tendon grafting and tendon transfers, using the Pulvertaft weave suture. METHODS: Sixty tendons were used from fresh human cadaver upper and lower extremities. The performed repairs included: 9 specimens of flexor digitorum superficialis or profundus tendon with flexor digitorum superficialis or profundus tendon (thick-thick suture), 10 specimens of flexor digitorum superficialis or profundus tendon with palmaris longus tendon (thick-medium thin suture), and 10 specimens of flexor digitorum superficialis or profundus tendon with plantaris tendon (thick-thin suture). Material testing machine was used to test repairs to failure. FINDINGS: The mean maximum load at failure increased with the thickness of donor tendon. For the thick-thick specimen, the maximum load at failure was 125 newtons (N), for the thick-medium thin specimen it was 86,8N, and for the thick-thin it was 65,2N. These differences were all statistically significant. INTERPRETATION: The active rehabilitation protocol is possible only with thick-thick connections used, the strength of the thick-medium thin connection is on the border of indications for the active rehabilitation protocol, and the thick-thin connection strength is sufficient only for the passive rehabilitation protocol.


Subject(s)
Suture Techniques , Sutures , Tendon Transfer/methods , Arm/anatomy & histology , Biomechanical Phenomena , Humans , Leg/anatomy & histology , Musculoskeletal Physiological Phenomena , Stress, Mechanical , Tendons/surgery , Tendons/transplantation , Tensile Strength , Time Factors
11.
Colloids Surf B Biointerfaces ; 54(2): 165-72, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17125976

ABSTRACT

Hydrogen peroxide was incorporated into silica xerogel matrix over the concentration range from 3.8 to 68.0 wt% via the sol-gel route. The obtained composites were characterized by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The release rates of H(2)O(2) from the composites into the aqueous phase were examined. In most cases, a 90% release was attained after ca. 10 min, and it was only slightly dependent on H(2)O(2) concentration and particle size. The antimicrobial activity of the composite containing 3.59% H(2)O(2) was evaluated against Escherichia coli and Micrococcus luteus. A comparative assay was carried out for aqueous solution of H(2)O(2) of the same concentration. The results demonstrated a potent microbicidal efficacy of the composite. Furthermore, diffusion range of the hydrogen peroxide from the solid composite into an agar medium matched that of the H(2)O(2) in aqueous solution. The stability tests with the xerogels containing 3.8, 26.4, and 68.0% of H(2)O(2) showed that after 63 days respective losses of the H(2)O(2) at 3 degrees C were 8.8, 9.7, and 6.2%. Both the DSC results and the stability tests have shown that the molecular water present in the pores stabilizes the composite, probably through improving the binding of the H(2)O(2) molecules onto the silica surface.


Subject(s)
Anti-Infective Agents/pharmacology , Hydrogen Peroxide , Silicon Dioxide , Anti-Infective Agents/chemistry , Calorimetry, Differential Scanning , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...