Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Methods ; 17(12): 1254-1261, 2020 12.
Article in English | MEDLINE | ID: mdl-33139893

ABSTRACT

Animal behavior is encoded in neuronal circuits in the brain. To elucidate the function of these circuits, it is necessary to identify, record from and manipulate networks of connected neurons. Here we present BAcTrace (Botulinum-Activated Tracer), a genetically encoded, retrograde, transsynaptic labeling system. BAcTrace is based on Clostridium botulinum neurotoxin A, Botox, which we engineered to travel retrogradely between neurons to activate an otherwise silent transcription factor. We validated BAcTrace at three neuronal connections in the Drosophila olfactory system. We show that BAcTrace-mediated labeling allows electrophysiological recording of connected neurons. Finally, in a challenging circuit with highly divergent connections, BAcTrace correctly identified 12 of 16 connections that were previously observed by electron microscopy.


Subject(s)
Botulinum Toxins, Type A/pharmacology , Drosophila melanogaster/physiology , Mushroom Bodies/metabolism , Olfactory Bulb/metabolism , Olfactory Receptor Neurons/metabolism , Animals , Cells, Cultured , Clostridium botulinum/metabolism , Mushroom Bodies/cytology
2.
Cell Rep ; 31(10): 107732, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32521257

ABSTRACT

Directed differentiation of human pluripotent stem cells varies in specificity and efficiency. Stochastic, genetic, intracellular, and environmental factors affect maintenance of pluripotency and differentiation into early embryonic lineages. However, factors affecting variation in in vitro differentiation to defined cell types are not well understood. To address this, we focused on a well-established differentiation process to cerebral cortex neural progenitor cells and their neuronal progeny from human pluripotent stem cells. Analysis of 162 differentiation outcomes of 61 stem cell lines derived from 37 individuals showed that most variation occurs along gene expression axes reflecting dorsoventral and rostrocaudal spatial expression during in vivo brain development. Line-independent and line-dependent variations occur, with the latter driven largely by differences in endogenous Wnt signaling activity. Tuning Wnt signaling during a specific phase early in the differentiation process reduces variability, demonstrating that cell-line/genome-specific differentiation outcome biases can be corrected by controlling extracellular signaling.


Subject(s)
Neural Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Cell Differentiation , Humans , Signal Transduction
3.
Brain Commun ; 2(2): fcaa146, 2020.
Article in English | MEDLINE | ID: mdl-33543132

ABSTRACT

In addition to increased aberrant protein aggregation, inflammation has been proposed as a key element in the pathogenesis and progression of Alzheimer's disease. How inflammation interacts with other disease pathways and how protein aggregation increases during disease are not clear. We used single-molecule imaging approaches and membrane permeabilization assays to determine the effect of chronic exposure to tumour necrosis factor, a master proinflammatory cytokine, on protein aggregation in human-induced pluripotent stem cell-derived neurons harbouring monogenic Alzheimer's disease mutations. We report that exposure of Alzheimer's disease neurons, but not control neurons, to tumour necrosis factor induces substantial production of extracellular protein aggregates. Aggregates from Alzheimer's disease neurons are composed of amyloid-ß and α-synuclein and induce significant permeabilization of lipid membranes in an assay of pathogenicity. These findings provide support for a causal relationship between two crucial processes in Alzheimer's disease pathogenesis and suggest that targeting inflammation, particularly tumour necrosis factor, may have beneficial downstream effects on ameliorating aberrant protein aggregation and accumulation.

4.
Science ; 362(6416)2018 11 16.
Article in English | MEDLINE | ID: mdl-30309905

ABSTRACT

Harnessing the potential of human stem cells for modeling the physiology and diseases of cortical circuitry requires monitoring cellular dynamics in vivo. We show that human induced pluripotent stem cell (iPSC)-derived cortical neurons transplanted into the adult mouse cortex consistently organized into large (up to ~100 mm3) vascularized neuron-glia territories with complex cytoarchitecture. Longitudinal imaging of >4000 grafted developing human neurons revealed that neuronal arbors refined via branch-specific retraction; human synaptic networks substantially restructured over 4 months, with balanced rates of synapse formation and elimination; and oscillatory population activity mirrored the patterns of fetal neural networks. Lastly, we found increased synaptic stability and reduced oscillations in transplants from two individuals with Down syndrome, demonstrating the potential of in vivo imaging in human tissue grafts for patient-specific modeling of cortical development, physiology, and pathogenesis.


Subject(s)
Cerebral Cortex/embryology , Down Syndrome/embryology , Models, Biological , Neurogenesis , Neuronal Plasticity , Neurons/physiology , Animals , Axons/physiology , Axons/ultrastructure , Cerebral Cortex/blood supply , Cerebral Cortex/ultrastructure , Down Syndrome/pathology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Induced Pluripotent Stem Cells/transplantation , Mice , Mice, SCID , Microscopy, Fluorescence, Multiphoton , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Neuroglia/cytology , Neuroimaging , Neurons/pathology , Neurons/ultrastructure , Single-Cell Analysis , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...