Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
J Biol Chem ; 276(34): 31732-7, 2001 Aug 24.
Article in English | MEDLINE | ID: mdl-11423553

ABSTRACT

A cDNA (LeAPP2) was cloned from tomato coding for a 654 amino acid protein of 72.7 kDa. The deduced amino acid sequence was >40% identical with that of mammalian aminopeptidase P, a metalloexopeptidase. All amino acids reported to be important for binding of the active site metals and catalytic activity, respectively, were conserved between LeAPP2 and its mammalian homologues. LeAPP2 was expressed in Escherichia coli in N-terminal fusion with glutathione S-transferase and was purified from bacterial extracts. LeAPP2 was verified as an aminopeptidase P, hydrolyzing the amino-terminal Xaa-Pro bonds of bradykinin and substance P. LeAPP2 also exhibited endoproteolytic activity cleaving, albeit at a reduced rate, the internal -Phe-Gly bond of substance P. Apparent K(m) (15.2 +/- 2.4 microm) and K(m)/k(cat) (0.94 +/- 0.11 mm(-1) x s(-1)) values were obtained for H-Lys(Abz)-Pro-Pro-pNA as the substrate. LeAPP2 activity was maximally stimulated by addition of 4 mm MnCl(2) and to some extent also by Mg(2+), Ca(2+), and Co(2+), whereas other divalent metal ions (Cu(2+), Zn(2+)) were inhibitory. Chelating agents and thiol-modifying reagents inhibited the enzyme. The data are consistent with LeAPP2 being a Mn(II)-dependent metalloprotease. This is the first characterization of a plant aminopeptidase P.


Subject(s)
Aminopeptidases/genetics , Solanum lycopersicum/enzymology , Amino Acid Sequence , Aminopeptidases/chemistry , Aminopeptidases/metabolism , Base Sequence , Catalysis , Cloning, Molecular , DNA Primers , DNA, Complementary , Genes, Plant , Molecular Sequence Data , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Substrate Specificity
2.
Structure ; 9(5): 419-29, 2001 May 09.
Article in English | MEDLINE | ID: mdl-11377202

ABSTRACT

BACKGROUND: 12-Oxophytodienoate reductase (OPR) is a flavin mononucleotide (FMN)-dependent oxidoreductase in plants that belongs to the family of Old Yellow Enzyme (OYE). It was initially characterized as an enzyme involved in the biosynthesis of the plant hormone jasmonic acid, where it catalyzes the reduction of the cyclic fatty acid derivative 9S,13S-12-oxophytodienoate (9S,13S-OPDA) to 1S,2S-3-oxo-2(2'[Z]-pentenyl)-cyclopentane-1-octanoate. Several isozymes of OPR are now known that show different stereoselectivities with regard to the four stereoisomers of OPDA. RESULTS: Here, we report the high-resolution crystal structure of OPR1 from Lycopersicon esculentum and its complex structures with the substrate 9R,13R-OPDA and with polyethylene glycol 400. OPR1 crystallizes as a monomer and folds into a (betaalpha)(8) barrel with an overall structure similar to OYE. The cyclopentenone ring of 9R,13R-OPDA is stacked above the flavin and activated by two hydrogen bonds to His187 and His190. The olefinic bond is properly positioned for hydride transfer from the FMN N(5) and proton transfer from Tyr192 to Cbeta and Calpha, respectively. Comparison of the OPR1 and OYE structures reveals striking differences in the loops responsible for binding 9R,13R-OPDA in OPR1. CONCLUSIONS: Despite extensive biochemical characterization, the physiological function of OYE still remains unknown. The similar catalytic cavity structures and the substrate binding mode in OPR1 strongly support the assumption that alpha,beta-unsaturated carbonyl compounds are physiological substrates of the OYE family. The specific binding of 9R,13R-OPDA by OPR1 explains the experimentally observed stereoselectivity and argues in favor of 9R,13R-OPDA or a structurally related oxylipin as natural substrate of OPR1.


Subject(s)
Fatty Acids, Unsaturated/chemistry , NADPH Dehydrogenase/chemistry , Oxidoreductases Acting on CH-CH Group Donors , Oxidoreductases/chemistry , Binding Sites , Crystallography, X-Ray , Flavin Mononucleotide/chemistry , Solanum lycopersicum/enzymology , Models, Molecular , Oxidation-Reduction , Protein Structure, Secondary , Substrate Specificity
3.
J Biol Chem ; 274(49): 35067-73, 1999 Dec 03.
Article in English | MEDLINE | ID: mdl-10574986

ABSTRACT

A cDNA was isolated and characterized from a tomato shoot cDNA library, the deduced amino acid sequence of which exhibited similarity with yeast Old Yellow Enzymes (OYEs) and related enzymes of bacterial and plant origin. Sequence identity was particularly high with 12-oxophytodienoate 10,11-reductase (OPR) from Arabidopsis thaliana. The cDNA-encoded protein was expressed as a glutathione S-transferase fusion protein in Escherichia coli and was purified from bacterial extracts. The protein was found to be a flavoprotein catalyzing the NADPH-dependent reduction of the olefinic bond of alpha,beta-unsaturated carbonyl compounds, including 12-oxophytodienoic acid. Thus, the tomato enzyme was termed LeOPR. The catalytic efficiency of LeOPR was highest with N-ethylmaleimide followed by 12-oxophytodienoic acid and maleic acid as substrates. Photoreduction of the LeOPR-bound FMN resulted in the formation of a red, anionic semiquinone prior to the formation of the fully reduced flavin dihydroquinone. Spectroscopic characterization of LeOPR revealed the formation of charge transfer complexes upon titration with para-substituted phenolic compounds, a distinctive feature of the enzymes of the OYE family. The ligand binding properties were compared between LeOPR and OYE, and the findings are discussed with respect to structural differences between the active sites of OYE and LeOPR.


Subject(s)
NADPH Dehydrogenase/genetics , Oxidoreductases Acting on CH-CH Group Donors , Solanum lycopersicum/enzymology , Amino Acid Sequence , Base Sequence , Binding Sites , Blotting, Northern , Blotting, Southern , Cloning, Molecular , DNA, Complementary/metabolism , Electrophoresis, Polyacrylamide Gel , Flavins/metabolism , Kinetics , Solanum lycopersicum/chemistry , Solanum lycopersicum/genetics , Models, Molecular , Molecular Sequence Data , NADPH Dehydrogenase/biosynthesis , NADPH Dehydrogenase/isolation & purification , NADPH Dehydrogenase/metabolism , Oxidoreductases/metabolism , Phenols/metabolism , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL
...