Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Anal Chem ; 2022: 2011170, 2022.
Article in English | MEDLINE | ID: mdl-35719274

ABSTRACT

Electrically conducting liquid droplets can be activated and moved by electrowetting-on-dielectric (EWOD) and optoelectrowetting (OEW). An important application is droplet manipulation in digital microfluidics (DMF, lab-on-a-chip 2.0) as a chip-sized chemical laboratory. For spectroscopic analyses of chemical reactions, it is often necessary to prepare or examine the reagent droplets before, during, and after the reaction. With OEW, single droplets with volumes of 50-250 nl can be moved, analyzed, and merged in one pipetting step. To ensure analysis sensitivity in many applications, lab-chips should only be used once due to contamination of the surface and chemical modification of the layers by the droplets. Single-use chip preparation without a lithographic step, e.g., for the definition of the spacer layer, reduces efforts and costs. Here, exemplarily, we demonstrate the OEW-driven movement and mixing of chemical reagents in a simple color change reaction analyzed by absorption spectroscopy. Stripes made from the insulating tape serve as spacers between sub and superstrate, and any lithographic step can be avoided.

2.
Micromachines (Basel) ; 12(5)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946861

ABSTRACT

Reflectance anisotropy spectroscopy (RAS), which was originally invented to monitor epitaxial growth, can-as we have previously shown-also be used to monitor the reactive ion etching of III/V semiconductor samples in situ and in real time, as long as the etching rate is not too high and the abrasion at the etch front is not totally chaotic. Moreover, we have proven that-using RAS equipment and optical Fabry‒Perot oscillations due to the ever-shrinking thickness of the uppermost etched layer-the in situ etch-depth resolution can be as good as ±0.8 nm, employing a Vernier-scale type measurement and evaluation procedure. Nominally, this amounts to ±1.3 lattice constants in our exemplary material system, AlGaAsSb, on a GaAs or GaSb substrate. In this contribution, we show that resolutions of about ±5.6 nm can be reliably achieved without a Vernier scale protocol by employing thin doped layers or sharp interfaces between differently doped layers or quantum-dot (QD) layers as etch-stop indicators. These indicator layers can either be added to the device layer design on purpose or be part of it incidentally due to the functionality of the device. For typical etch rates in the range of 0.7 to 1.3 nm/s (that is, about 40 to 80 nm/min), the RAS spectrum will show a distinct change even for very thin indicator layers, which allows for the precise termination of the etch run.

3.
Int J Anal Chem ; 2021: 3402411, 2021.
Article in English | MEDLINE | ID: mdl-34976066

ABSTRACT

Meanwhile, electrowetting-on-dielectric (EWOD) is a well-known phenomenon, even often exploited in active micro-optics to change the curvature of microdroplet lenses or in analytical chemistry with digital microfluidics (DMF, lab on a chip 2.0) to move/actuate microdroplets. Optoelectrowetting (OEW) can bring more flexibility to DMF because in OEW, the operating point of the lab chip is locally controlled by a beam of light, usually impinging onto the chip perpendicularly. As opposed to pure EWOD, for OEW, none of the electrodes has to be structured, which makes the chip design and production technology simpler; the path of any actuated droplet is determined by the movement of the light spot. However, for applications in analytical chemistry, it would be helpful if the space both below as well as that above the lab chip were not obstructed by any optical components and light sources. Here, we report on the possibility to actuate droplets by laser light beams, which traverse the setup parallel to the chip surface and inside the OEW layer sequence. Since microdroplets are grabbed by this surface-parallel, nondiverging, and nonexpanded light beam, we call this principle "light line OEW" (LL-OEW).

4.
Beilstein J Nanotechnol ; 7: 1783-1793, 2016.
Article in English | MEDLINE | ID: mdl-28144528

ABSTRACT

Reflectance anisotropy spectroscopy (RAS) equipment is applied to monitor dry-etch processes (here specifically reactive ion etching (RIE)) of monocrystalline multilayered III-V semiconductors in situ. The related accuracy of etch depth control is better than 16 nm. Comparison with results of secondary ion mass spectrometry (SIMS) reveals a deviation of only about 4 nm in optimal cases. To illustrate the applicability of the reported method in every day settings for the first time the highly etch depth sensitive lithographic process to form a film lens on the waveguide ridge of a broad area laser (BAL) is presented. This example elucidates the benefits of the method in semiconductor device fabrication and also suggests how to fulfill design requirements for the sample in order to make RAS control possible.

SELECTION OF CITATIONS
SEARCH DETAIL
...