Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters










Publication year range
1.
Biomolecules ; 14(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38927044

ABSTRACT

Bisphenol A (BPA) and bisphenol B (BPB) are widely used in the production of plastics, and their potential adverse health effects, particularly on endocrine disruption and metabolic health, have raised concern. Peroxisome proliferator-activated receptor gamma (PPARγ) plays a pivotal role in metabolic regulation and adipogenesis, making it a target of interest in understanding the development of obesity and associated health impacts. In this study, we employ X-ray crystallography and molecular dynamics (MD) simulations to study the interaction of PPARγ with BPA and BPB. Crystallographic structures reveal the binding of BPA and BPB to the ligand binding domain of PPARγ, next to C285, where binding of partial agonists as well as antagonists and inverse agonists of PPARγ signaling has been previously observed. However, no interaction of BPA and BPB with Y437 in the activation function 2 site is observed, showing that these ligands cannot stabilize the active conformation of helix 12 directly. Furthermore, free energy analyses of the MD simulations revealed that I341 has a large energetic contribution to the BPA and BPB binding modes characterized in this study.


Subject(s)
Benzhydryl Compounds , Molecular Dynamics Simulation , PPAR gamma , Phenols , Protein Binding , Phenols/chemistry , Phenols/metabolism , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/metabolism , PPAR gamma/chemistry , PPAR gamma/metabolism , PPAR gamma/agonists , Crystallography, X-Ray , Humans , Binding Sites , Ligands
2.
J Med Chem ; 67(11): 8757-8790, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38753594

ABSTRACT

Given the crucial role of the main protease (Mpro) in the replication cycle of SARS-CoV-2, this viral cysteine protease constitutes a high-profile drug target. We investigated peptidomimetic azapeptide nitriles as auspicious, irreversibly acting inhibitors of Mpro. Our systematic approach combined an Mpro active-site scanning by combinatorially assembled azanitriles with structure-based design. Encouraged by the bioactive conformation of open-chain inhibitors, we conceptualized the novel chemotype of macrocyclic azanitriles whose binding mode was elucidated by cocrystallization. This strategy provided a favorable entropic contribution to target binding and resulted in the development of the extraordinarily potent Mpro inhibitor 84 with an IC50 value of 3.23 nM and a second-order rate constant of inactivation, kinac/Ki, of 448,000 M-1s-1. The open-chain Mpro inhibitor 58, along with the macrocyclic compounds 83 and 84, a broad-spectrum anticoronaviral agent, demonstrated the highest antiviral activity with EC50 values in the single-digit micromolar range. Our findings are expected to promote the future development of peptidomimetic Mpro inhibitors as anti-SARS-CoV-2 agents.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Nitriles , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , SARS-CoV-2/drug effects , Nitriles/chemistry , Nitriles/pharmacology , Nitriles/chemical synthesis , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Structure-Activity Relationship , Humans , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/chemical synthesis , COVID-19 Drug Treatment , Drug Discovery , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/chemical synthesis , Peptidomimetics/pharmacology , Peptidomimetics/chemistry , Peptidomimetics/chemical synthesis , Cysteine Proteinase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/chemical synthesis , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis
3.
ACS Pharmacol Transl Sci ; 7(5): 1415-1425, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38751633

ABSTRACT

The adenosine A2A receptor (A2AAR) belongs to the rhodopsin-like G protein-coupled receptor (GPCR) family, which constitutes the largest class of GPCRs. Partial agonists show reduced efficacy as compared to physiological agonists and can even act as antagonists in the presence of a full agonist. Here, we determined an X-ray crystal structure of the partial A2AAR agonist 2-amino-6-[(1H-imidazol-2-ylmethyl)sulfanyl]-4-p-hydroxyphenyl-3,5-pyridinedicarbonitrile (LUF5834) in complex with the A2AAR construct A2A-PSB2-bRIL, stabilized in its inactive conformation and being devoid of any mutations in the ligand binding pocket. The determined high-resolution structure (2.43 Å) resolved water networks and crucial binding pocket interactions. A direct hydrogen bond of the p-hydroxy group of LUF5834 with T883.36 was observed, an amino acid that was mutated to alanine in the most frequently used A2AAR crystallization constructs thus preventing the discovery of its interactions in most of the previous A2AAR co-crystal structures. G protein dissociation studies confirmed partial agonistic activity of LUF5834 as compared to that of the full agonist N-ethylcarboxamidoadenosine (NECA). In contrast to NECA, the partial agonist was still able to bind to the receptor construct locked in its inactive conformation by an S913.39K mutation, although with an affinity lower than that at the native receptor. This could explain the compound's partial agonistic activity: while full A2AAR agonists bind exclusively to the active conformation, likely following conformational selection, partial agonists bind to active as well as inactive conformations, showing higher affinity for the active conformation. This might be a general mechanism of partial agonism also applicable to other GPCRs.

4.
Acta Pharm Sin B ; 14(5): 2349-2357, 2024 May.
Article in English | MEDLINE | ID: mdl-38799620

ABSTRACT

A titrant for the SARS-CoV-2 main protease (Mpro) was developed that enables, for the first time, the exact determination of the concentration of the enzymatically active Mpro by active-site titration. The covalent binding mode of the tetrapeptidic titrant was elucidated by the determination of the crystal structure of the enzyme-titrant complex. Four fluorogenic substrates of Mpro, including a prototypical, internally quenched Dabcyl-EDANS peptide, were compared in terms of solubility under typical assay conditions. By exploiting the new titrant, key kinetic parameters for the Mpro-catalyzed cleavage of these substrates were determined.

5.
J Med Chem ; 66(23): 16426-16440, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37992202

ABSTRACT

The ongoing transmission of SARS-CoV-2 necessitates the development of additional potent antiviral agents capable of combating the current highly infectious variants and future coronaviruses. Here, we present the discovery of potent nonpeptide main protease (Mpro) inhibitors with prominent antiviral activity and improved pharmacokinetic properties. Three series of 1,2,4-trisubstituted piperazine derivatives were designed and synthesized, and the optimal GC-78-HCl demonstrated high enzyme-inhibitory potency (IC50 = 0.19 µM) and exhibited excellent antiviral activity (EC50 = 0.40 µM), reaching the same level as Nirmatrelvir (EC50 = 0.38 µM). Additionally, GC-78-HCl displayed potent antiviral activities against various SARS-CoV-2 variants as well as HCoV-OC43 and HCoV-229E, indicating its potential broad-spectrum anticoronaviral activity. Notably, the pharmacokinetic properties of GC-78-HCl were somewhat enhanced compared to those of the lead compound. Furthermore, the cocrystal and molecular docking elucidated the mechanism of action. In conclusion, we discovered a novel nonpeptidic Mpro inhibitor with promising antiviral activity and a favorable pharmacokinetic profile.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Piperazines/pharmacology
6.
J Biol Chem ; 299(12): 105356, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37863265

ABSTRACT

Adhesion G protein-coupled receptors (aGPCRs) feature large extracellular regions with modular domains that often resemble protein classes of various function. The pentraxin (PTX) domain, which is predicted by sequence homology within the extracellular region of four different aGPCR members, is well known to form pentamers and other oligomers. Oligomerization of GPCRs is frequently reported and mainly driven by interactions of the seven-transmembrane region and N or C termini. While the functional importance of dimers is well-established for some class C GPCRs, relatively little is known about aGPCR multimerization. Here, we showcase the example of ADGRG4, an orphan aGPCR that possesses a PTX-like domain at its very N-terminal tip, followed by an extremely long stalk containing serine-threonine repeats. Using X-ray crystallography and biophysical methods, we determined the structure of this unusual PTX-like domain and provide experimental evidence for a homodimer equilibrium of this domain which is Ca2+-independent and driven by intermolecular contacts that differ vastly from the known soluble PTXs. The formation of this dimer seems to be conserved in mammalian ADGRG4 indicating functional relevance. Our data alongside of theoretical considerations lead to the hypothesis that ADGRG4 acts as an in vivo sensor for shear forces in enterochromaffin and Paneth cells of the small intestine.


Subject(s)
Biophysical Phenomena , Protein Domains , Receptors, G-Protein-Coupled , Signal Transduction , Animals , Mammals/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Enterochromaffin Cells/metabolism , Paneth Cells/metabolism , Crystallography, X-Ray , Biophysical Phenomena/physiology , Models, Molecular , Protein Structure, Tertiary , Protein Folding , Sequence Alignment , Amino Acid Sequence , HEK293 Cells , Humans
7.
Commun Chem ; 6(1): 106, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37264098

ABSTRACT

The Gs protein-coupled adenosine A2A receptor (A2AAR) represents an emerging drug target for cancer immunotherapy. The clinical candidate Etrumadenant was developed as an A2AAR antagonist with ancillary blockade of the A2BAR subtype. It constitutes a unique chemotype featuring a poly-substituted 2-amino-4-phenyl-6-triazolylpyrimidine core structure. Herein, we report two crystal structures of the A2AAR in complex with Etrumadenant, obtained with differently thermostabilized A2AAR constructs. This led to the discovery of an unprecedented interaction, a hydrogen bond of T883.36 with the cyano group of Etrumadenant. T883.36 is mutated in most A2AAR constructs used for crystallization, which has prevented the discovery of its interactions. In-vitro characterization of Etrumadenant indicated low selectivity versus the A1AR subtype, which can be rationalized by the structural data. These results will facilitate the future design of AR antagonists with desired selectivity. Moreover, they highlight the advantages of the employed A2AAR crystallization construct that is devoid of ligand binding site mutations.

8.
Cell Rep ; 42(7): 112679, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37354459

ABSTRACT

The adhesion G-protein-coupled receptor GPR133 (ADGRD1) supports growth of the brain malignancy glioblastoma. How the extracellular interactome of GPR133 in glioblastoma modulates signaling remains unknown. Here, we use affinity proteomics to identify the transmembrane protein PTK7 as an extracellular binding partner of GPR133 in glioblastoma. PTK7 binds the autoproteolytically generated N-terminal fragment of GPR133 and its expression in trans increases GPR133 signaling. This effect requires the intramolecular cleavage of GPR133 and PTK7's anchoring in the plasma membrane. PTK7's allosteric action on GPR133 signaling is additive with but topographically distinct from orthosteric activation by soluble peptide mimicking the endogenous tethered Stachel agonist. GPR133 and PTK7 are expressed in adjacent cells in glioblastoma, where their knockdown phenocopies each other. We propose that this ligand-receptor interaction is relevant to the pathogenesis of glioblastoma and possibly other physiological processes in healthy tissues.


Subject(s)
Glioblastoma , Humans , Signal Transduction , Receptors, G-Protein-Coupled/metabolism , Cell Membrane/metabolism , Allosteric Regulation , Ligands , Allosteric Site , Cell Adhesion Molecules/metabolism , Receptor Protein-Tyrosine Kinases/metabolism
9.
Nat Commun ; 14(1): 1905, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37019924

ABSTRACT

The recently discovered metagenomic-derived polyester hydrolase PHL7 is able to efficiently degrade amorphous polyethylene terephthalate (PET) in post-consumer plastic waste. We present the cocrystal structure of this hydrolase with its hydrolysis product terephthalic acid and elucidate the influence of 17 single mutations on the PET-hydrolytic activity and thermal stability of PHL7. The substrate-binding mode of terephthalic acid is similar to that of the thermophilic polyester hydrolase LCC and deviates from the mesophilic IsPETase. The subsite I modifications L93F and Q95Y, derived from LCC, increased the thermal stability, while exchange of H185S, derived from IsPETase, reduced the stability of PHL7. The subsite II residue H130 is suggested to represent an adaptation for high thermal stability, whereas L210 emerged as the main contributor to the observed high PET-hydrolytic activity. Variant L210T showed significantly higher activity, achieving a degradation rate of 20 µm h-1 with amorphous PET films.


Subject(s)
Hydrolases , Phthalic Acids , Hydrolases/metabolism , Plastics , Polyethylene Terephthalates/chemistry
10.
Angew Chem Int Ed Engl ; 62(17): e202300657, 2023 04 17.
Article in English | MEDLINE | ID: mdl-36762980

ABSTRACT

Flavoprotein monooxygenases are a versatile group of enzymes for biocatalytic transformations. Among these, group E monooxygenases (GEMs) catalyze enantioselective epoxidation and sulfoxidation reactions. Here, we describe the crystal structure of an indole monooxygenase from the bacterium Variovorax paradoxus EPS, a GEM designated as VpIndA1. Complex structures with substrates reveal productive binding modes that, in conjunction with force-field calculations and rapid mixing kinetics, reveal the structural basis of substrate and stereoselectivity. Structure-based redesign of the substrate cavity yielded variants with new substrate selectivity (for sulfoxidation of benzyl phenyl sulfide) or with greatly enhanced stereoselectivity (from 35.1 % to 99.8 % ee for production of (1S,2R)-indene oxide). This first determination of the substrate binding mode of GEMs combined with structure-function relationships opens the door for structure-based design of these powerful biocatalysts.


Subject(s)
Mixed Function Oxygenases , Oxygenases , Biocatalysis , Indoles , Mixed Function Oxygenases/metabolism , Oxygenases/metabolism , Substrate Specificity , Oxidation-Reduction , Sulfur/chemistry
11.
Environ Int ; 173: 107822, 2023 03.
Article in English | MEDLINE | ID: mdl-36841188

ABSTRACT

Di-2-ethylhexyl phthalate (DEHP) and its substitute 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) are widely used as plasticizers but may have adverse health effects. Via hydrolysis of one of the two ester bonds in the human body, DEHP and DINCH form the monoesters MEHP and MINCH, respectively. Previous studies demonstrated binding of these metabolites to PPARγ and the induction of adipogenesis via this pathway. Detailed structural understanding of how these metabolites interact with PPARγ and thereby affect human health is lacking until now. We therefore characterized the binding modes of MINCH and MEHP to the ligand binding domain of PPARγ by X-ray crystallography and molecular dynamics (MD) simulations. Both compounds bind to the activating function-2 (AF-2) binding site via an interaction of the free carboxylates with the histidines 323 and 449, tyrosine 473 and serine 289. The alkyl chains form hydrophobic interactions with the tunnel next to cysteine 285. These binding modes are generally stable as demonstrated by the MD simulations and they resemble the complexation of fatty acids and their metabolites to the AF-2 site of PPARγ. Similar to the situation for these natural PPARγ agonists, the interaction of the free carboxylate groups of MEHP and MINCH with tyrosine 473 and surrounding residues stabilizes the AF-2 helix in the upward conformation. This state promotes binding of coactivator proteins and thus formation of the active complex for transcription of the specific target genes. Moreover, a comparison of the residues involved in binding of the plasticizer metabolites in vertebrate PPARγ orthologs shows that these compounds likely have similar effects in other species.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Humans , Plasticizers/metabolism , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/metabolism , PPAR gamma/metabolism , Furylfuramide , Phthalic Acids/metabolism
12.
J Med Chem ; 65(24): 16902-16917, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36475694

ABSTRACT

The spread of SARS-CoV-2 keeps threatening human life and health, and small-molecule antivirals are in demand. The main protease (Mpro) is an effective and highly conserved target for anti-SARS-CoV-2 drug design. Herein, we report the discovery of potent covalent non-peptide-derived Mpro inhibitors. A series of covalent compounds with a piperazine scaffold containing different warheads were designed and synthesized. Among them, GD-9 was identified as the most potent compound with a significant enzymatic inhibition of Mpro (IC50 = 0.18 µM) and good antiviral potency against SARS-CoV-2 (EC50 = 2.64 µM), similar to that of remdesivir (EC50 = 2.27 µM). Additionally, GD-9 presented favorable target selectivity for SARS-CoV-2 Mpro versus human cysteine proteases. The X-ray co-crystal structure confirmed our original design concept showing that GD-9 covalently binds to the active site of Mpro. Our nonpeptidic covalent inhibitors provide a basis for the future development of more efficient COVID-19 therapeutics.


Subject(s)
COVID-19 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation , Piperazines/pharmacology , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism
13.
J Med Chem ; 65(19): 13343-13364, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36107752

ABSTRACT

The continuous spread of SARS-CoV-2 calls for more direct-acting antiviral agents to combat the highly infectious variants. The main protease (Mpro) is an promising target for anti-SARS-CoV-2 drug design. Here, we report the discovery of potent non-covalent non-peptide Mpro inhibitors featuring a 1,2,4-trisubstituted piperazine scaffold. We systematically modified the non-covalent hit MCULE-5948770040 by structure-based rational design combined with multi-site binding and privileged structure assembly strategies. The optimized compound GC-14 inhibits Mpro with high potency (IC50 = 0.40 µM) and displays excellent antiviral activity (EC50 = 1.1 µM), being more potent than Remdesivir. Notably, GC-14 exhibits low cytotoxicity (CC50 > 100 µM) and excellent target selectivity for SARS-CoV-2 Mpro (IC50 > 50 µM for cathepsins B, F, K, L, and caspase 3). X-ray co-crystal structures prove that the inhibitors occupy multiple subpockets by critical non-covalent interactions. These studies may provide a basis for developing a more efficient and safer therapy for COVID-19.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Caspase 3 , Cathepsins , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Humans , Molecular Docking Simulation , Orotic Acid/analogs & derivatives , Piperazines/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2
14.
Anal Bioanal Chem ; 414(23): 6977-6987, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35995875

ABSTRACT

Microfluidic double-emulsion droplets allow the realization and study of biphasic chemical processes such as chemical reactions or extractions on the nanoliter scale. Double emulsions of the rare type (o1/w/o2) are used here to realize a lipase-catalyzed reaction in the non-polar phase. The surrounding aqueous phase induces the transfer of the hydrophilic product from the core oil phase, allowing on-the-fly MS analysis in single double droplets. A microfluidic two-step emulsification process is developed to generate the (o1/w/o2) double-emulsion droplets. In this first example of microfluidic double-emulsion MS coupling, we show in proof-of-concept experiments that the chemical composition of the water layer can be read online using ESI-MS. Double-emulsion droplets were further employed as two-phase micro-reactors for the hydrolysis of the lipophilic ester p-nitrophenyl palmitate catalyzed by the Candida antarctica lipase B (CalB). Finally, the formation of the hydrophilic reaction product p-nitrophenol within the double-emulsion droplet micro-reactors is verified by subjecting the double-emulsion droplets to online ESI-MS analysis.


Subject(s)
Esters , Spectrometry, Mass, Electrospray Ionization , Catalysis , Emulsions/chemistry , Hydrolysis , Lipase , Water/chemistry
15.
J Med Chem ; 65(3): 2409-2433, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35080883

ABSTRACT

We recently reported N4-substituted 3-methylcytidine-5'-α,ß-methylenediphosphates as CD73 inhibitors, potentially useful in cancer immunotherapy. We now expand the structure-activity relationship of pyrimidine nucleotides as human CD73 inhibitors. 4-Chloro (MRS4598 16; Ki = 0.673 nM) and 4-iodo (MRS4620 18; Ki = 0.436 nM) substitution of the N4-benzyloxy group decreased Ki by ∼20-fold. Primary alkylamine derivatives coupled through a p-amido group with a varying methylene chain length (24 and 25) were functionalized congeners, for subsequent conjugation to carrier or reporter moieties. X-ray structures of hCD73 with two inhibitors indicated a ribose ring conformational adaptation, and the benzyloxyimino group (E configuration) binds to the same region (between the C-terminal and N-terminal domains) as N4-benzyl groups in adenine inhibitors. Molecular dynamics identified stabilizing interactions and predicted conformational diversity. Thus, by N4-benzyloxy substitution, we have greatly enhanced the inhibitory potency and added functionality enabling molecular probes. Their potential as anticancer drugs was confirmed by blocking CD73 activity in tumor tissues in situ.


Subject(s)
5'-Nucleotidase/antagonists & inhibitors , Cytosine Nucleotides/pharmacology , Diphosphonates/pharmacology , Enzyme Inhibitors/pharmacology , 5'-Nucleotidase/metabolism , Adult , Cytosine Nucleotides/chemical synthesis , Cytosine Nucleotides/metabolism , Diphosphonates/chemical synthesis , Diphosphonates/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/metabolism , Humans , Male , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Neoplasms/enzymology , Palatine Tonsil/enzymology , Protein Binding , Structure-Activity Relationship
16.
Purinergic Signal ; 18(1): 115-121, 2022 03.
Article in English | MEDLINE | ID: mdl-34961895

ABSTRACT

CD73-derived adenosine plays a major role in damage-induced tissue responses by inhibiting inflammation. Damage-associated stimuli, such as hypoxia and mechanical stress, induce the cellular release of ATP and NAD+ and upregulate the expression of the nucleotide-degrading purinergic ectoenzyme cascade, including adenosine-generating CD73. Extracellular NAD+ also serves as substrate for mono-ADP-ribosylation of cell surface proteins, which in human cells is mediated by ecto-ADP-ribosyltransferase 1 (ARTC1). Here we explored, whether human CD73 enzymatic activity is regulated by mono-ADP-ribosylation, using recombinant human CD73 in the presence of ARTC1 with etheno-labelled NAD+ as substrate. Multi-colour immunoblotting with an anti-etheno-adenosine antibody showed ARTC1-mediated transfer of ADP-ribose together with the etheno label to CD73. HPLC analysis of the enzymatic activity of in vitro-ribosylated CD73 revealed strong inhibition of adenosine generation in comparison to non-ribosylated CD73. Mass spectrometry of in vitro-ribosylated CD73 identified six ribosylation sites. 3D model analysis indicated that three of them (R328, R354, R545) can interfere with CD73 enzymatic activity. Our study identifies human CD73 as target for ARTC1-mediated mono-ADP-ribosylation, which can profoundly modulate its adenosine-generating activity. Thus, in settings with enhanced release of NAD+ as substrate for ARTC1, assessment of CD73 protein expression in human tissues may not be predictive of adenosine formation resulting in anti-inflammatory activity.


Subject(s)
5'-Nucleotidase/metabolism , Adenosine , ADP-Ribosylation , Adenosine/metabolism , Adenosine Diphosphate Ribose/metabolism , GPI-Linked Proteins/metabolism , Humans , Membrane Proteins , NAD
17.
ChemSusChem ; 15(9): e202101062, 2022 May 06.
Article in English | MEDLINE | ID: mdl-34129279

ABSTRACT

Earth is flooded with plastics and the need for sustainable recycling strategies for polymers has become increasingly urgent. Enzyme-based hydrolysis of post-consumer plastic is an emerging strategy for closed-loop recycling of polyethylene terephthalate (PET). The polyester hydrolase PHL7, isolated from a compost metagenome, completely hydrolyzes amorphous PET films, releasing 91 mg of terephthalic acid per hour and mg of enzyme. Vertical scanning interferometry shows degradation rates of the PET film of 6.8 µm h-1 . Structural analysis indicates the importance of leucine at position 210 for the extraordinarily high PET-hydrolyzing activity of PHL7. Within 24 h, 0.6 mgenzyme gPET -1 completely degrades post-consumer thermoform PET packaging in an aqueous buffer at 70 °C without any energy-intensive pretreatments. Terephthalic acid recovered from the enzymatic hydrolysate is then used to synthesize virgin PET, demonstrating the potential of polyester hydrolases as catalysts in sustainable PET recycling processes with a low carbon footprint.


Subject(s)
Hydrolases , Polyethylene Terephthalates , Carbon Footprint , Hydrolases/metabolism , Metagenome , Plastics/chemistry , Polyethylene Terephthalates/chemistry , Recycling
18.
Purinergic Signal ; 17(4): 693-704, 2021 12.
Article in English | MEDLINE | ID: mdl-34403084

ABSTRACT

Human ecto-5-nucleotidase (CD73) is involved in purinergic signalling, which influences a diverse range of biological processes. CD73 hydrolyses AMP and is the major control point for the levels of extracellular adenosine. Inhibitors of CD73 thus block the immunosuppressive action of adenosine, a promising approach for cancer immunotherapy. Interestingly, ADP and ATP are competitive inhibitors of CD73, with the most potent small-molecule inhibitors to date being non-hydrolysable ADP analogues. While AMP is the major substrate of the enzyme, CD73 has been reported to hydrolyse other 5'-nucleoside monophosphates. Based on a fragment screening campaign at the BESSY II synchrotron, we present the binding modes of various deoxyribo- and ribonucleoside monophosphates and of four additional fragments binding to the nucleoside binding site of the open form of the enzyme. Kinetic analysis of monophosphate hydrolysis shows that ribonucleotide substrates are favoured over their deoxyribose equivalents with AMP being the best substrate. We characterised the initial step of AMP hydrolysis, the binding mode of AMP to the open conformation of CD73 and compared that to other monophosphate substrates. In addition, the inhibitory activity of various bisphosphonic acid derivatives of nucleoside diphosphates was determined. Although AMPCP remains the most potent inhibitor, replacement of the adenine base with other purines or with pyrimidines increases the Ki value only between twofold and sixfold. On the other hand, these nucleobases offer new opportunities to attach substituents for improved pharmacological properties.


Subject(s)
5'-Nucleotidase/metabolism , Adenosine/metabolism , Purines/metabolism , Pyrimidine Nucleotides/metabolism , Signal Transduction/physiology , Humans , Hydrolysis , Protein Binding , Protein Folding
19.
J Biol Chem ; 296: 100798, 2021.
Article in English | MEDLINE | ID: mdl-34022221

ABSTRACT

GPR133 (ADGRD1), an adhesion G protein-coupled receptor (GPCR) whose canonical signaling activates GαS-mediated generation of cytosolic cAMP, has been shown to be necessary for the growth of glioblastoma (GBM), a brain malignancy. The extracellular N terminus of GPR133 is thought to be autoproteolytically cleaved into N-terminal and C- terminal fragments (NTF and CTF, respectively). However, the role of this cleavage in receptor activation remains unclear. Here, we used subcellular fractionation and immunoprecipitation approaches to show that the WT GPR133 receptor is cleaved shortly after protein synthesis and generates significantly more canonical signaling than an uncleavable point mutant GPR133 (H543R) in patient-derived GBM cultures and HEK293T cells. After cleavage, the resulting NTF and CTF remain noncovalently bound to each other until the receptor is trafficked to the plasma membrane, where we demonstrated NTF-CTF dissociation occurs. Using a fusion of the CTF of GPR133 and the N terminus of thrombin-activated human protease-activated receptor 1 as a controllable proxy system to test the effect of intramolecular cleavage and dissociation, we also showed that thrombin-induced cleavage and shedding of the human protease-activated receptor 1 NTF increased intracellular cAMP levels. These results support a model wherein dissociation of the NTF from the CTF at the plasma membrane promotes GPR133 activation and downstream signaling. These findings add depth to our understanding of the molecular life cycle and mechanism of action of GPR133 and provide critical insights that will inform therapeutic targeting of GPR133 in GBM.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Cyclic AMP/metabolism , Glioblastoma/metabolism , Humans , Proteolysis , Receptors, G-Protein-Coupled/chemistry , Tumor Cells, Cultured
20.
J Med Chem ; 64(1): 845-860, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33399453

ABSTRACT

Solid tumors are often associated with high levels of extracellular ATP. Ectonucleotidases catalyze the sequential hydrolysis of ATP to adenosine, which potently suppresses T-cell and NK-cell functions via the adenosine receptors (A2a and A2b). The ectonucleotidase CD73 catalyzes the conversion of AMP to adenosine. Thus, increased CD73 enzymatic activity in the tumor microenvironment is a potential mechanism for tumor immune evasion and has been associated with poor prognosis in the clinic. CD73 inhibition is anticipated to restore immune function by skirting this major mechanism of adenosine generation. We have developed a series of potent and selective methylenephosphonic acid CD73 inhibitors via a structure-based design. Key binding interactions of the known inhibitor adenosine-5'-(α,ß-methylene)diphosphate (AMPCP) with hCD73 provided the foundation for our early designs. The structure-activity relationship study guided by this structure-based design led to the discovery of 4a, which exhibits excellent potency against CD73, exquisite selectivity against related ectonucleotidases, and a favorable pharmacokinetic profile.


Subject(s)
5'-Nucleotidase/antagonists & inhibitors , Phosphorous Acids/chemistry , 5'-Nucleotidase/genetics , 5'-Nucleotidase/metabolism , Adenosine/metabolism , Binding Sites , Crystallography, X-Ray , Drug Design , Drug Evaluation, Preclinical , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Humans , Molecular Dynamics Simulation , Phosphorous Acids/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...