Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nat Genet ; 53(7): 1006-1021, 2021 07.
Article in English | MEDLINE | ID: mdl-34211179

ABSTRACT

SPTBN1 encodes ßII-spectrin, the ubiquitously expressed ß-spectrin that forms micrometer-scale networks associated with plasma membranes. Mice deficient in neuronal ßII-spectrin have defects in cortical organization, developmental delay and behavioral deficiencies. These phenotypes, while less severe, are observed in haploinsufficient animals, suggesting that individuals carrying heterozygous SPTBN1 variants may also show measurable compromise of neural development and function. Here we identify heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures; behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features. We show that these SPTBN1 variants lead to effects that affect ßII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics. Our studies define SPTBN1 variants as the genetic basis of a neurodevelopmental syndrome, expand the set of spectrinopathies affecting the brain and underscore the critical role of ßII-spectrin in the central nervous system.


Subject(s)
Genes, Dominant , Genetic Predisposition to Disease , Genetic Variation , Neurodevelopmental Disorders/genetics , Spectrin/genetics , Animals , Genetic Association Studies/methods , Heterozygote , Humans , Mice , Neurodevelopmental Disorders/diagnosis , Phenotype , Spectrin/metabolism
2.
Genet Med ; 22(7): 1215-1226, 2020 07.
Article in English | MEDLINE | ID: mdl-32376980

ABSTRACT

PURPOSE: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. METHODS: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. RESULTS: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. CONCLUSION: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies.


Subject(s)
Intellectual Disability , Transcriptome , Exome , Germ Cells , Humans , Intellectual Disability/genetics , Mutation, Missense , Phenotype , Transcriptome/genetics , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins
3.
Case Rep Genet ; 2015: 212436, 2015.
Article in English | MEDLINE | ID: mdl-25893121

ABSTRACT

Introduction. More than 60 cases of 7p22 duplications and deletions have been reported with over 16 of them occurring without concomitant chromosomal abnormalities. Patient and Methods. We report a 29-month-old male diagnosed with autism. Whole genome chromosome SNP microarray (REVEAL) demonstrated a 1.3 Mb interstitial duplication of 7p22.1 ->p22.1 arr 7p22.1 (5,436,367-6,762,394), the second smallest interstitial 7p duplication reported to date. This interval included 14 OMIM annotated genes (FBXL18, ACTB, FSCN1, RNF216, OCM, EIF2AK1, AIMP2, PMS2, CYTH3, RAC1, DAGLB, KDELR2, GRID2IP, and ZNF12). Results. Our patient presented features similar to previously reported cases with 7p22 duplication, including brachycephaly, prominent ears, cryptorchidism, speech delay, poor eye contact, and outburst of aggressive behavior with autism-like features. Among the genes located in the duplicated segment, ACTB gene has been proposed as a candidate gene for the alteration of craniofacial development. Overexpression of RNF216L has been linked to autism. FSCN1 may play a role in neurodevelopmental disease. Conclusion. Characterization of a possible 7p22.1 Duplication Syndrome has yet to be made. Recognition of the clinical spectrum in patients with a smaller duplication of 7p should prove valuable for determining the minimal critical region, helping delineate a better prediction of outcome and genetic counseling.

4.
Hum Genet ; 133(2): 199-209, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24092497

ABSTRACT

Although constitutional chromosome abnormalities have been recognized since the 1960s, clinical characterization and development of treatment options have been hampered by their obvious genetic complexity and relative rarity. Additionally, deletions of 18q are particularly heterogeneous, with no two people having the same breakpoints. We identified 16 individuals with deletions that, despite unique breakpoints, encompass the same set of genes within a 17.6-Mb region. This group represents the most genotypically similar group yet identified with distal 18q deletions. As the deletion is of average size when compared with other 18q deletions, this group can serve as a reference point for the clinical and molecular description of this condition. We performed a thorough medical record review as well as a series of clinical evaluations on 14 of the 16 individuals. Common functional findings included developmental delays, hypotonia, growth hormone deficiency, and hearing loss. Structural anomalies included foot anomalies, ear canal atresia/stenosis, and hypospadias. The majority of individuals performed within the low normal range of cognitive ability but had more serious deficits in adaptive abilities. Of interest, the hemizygous region contains 38 known genes, 26 of which are sufficiently understood to tentatively determine dosage sensitivity. Published data suggest that 20 are unlikely to cause an abnormal phenotype in the hemizygous state and five are likely to be dosage sensitive: TNX3, NETO1, ZNF407, TSHZ1, and NFATC. A sixth gene, ATP9B, may be conditionally dosage sensitive. Not all distal 18q- phenotypes can be attributed to these six genes; however, this is an important advance in the molecular characterization of 18q deletions.


Subject(s)
Cadherins/genetics , Chromosome Deletion , Chromosomes, Human, Pair 18/genetics , Serpins/genetics , Adaptation, Psychological , Adolescent , Adult , Asperger Syndrome/genetics , Autistic Disorder/genetics , Child , Child, Preschool , Chromosome Disorders/genetics , Chromosome Mapping , Cohort Studies , Female , Gene Dosage , Genotype , Humans , Karyotyping , Longitudinal Studies , Male , Phenotype , Texas , Young Adult
5.
Am J Med Genet A ; 158A(10): 2534-6, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22893378

ABSTRACT

We describe the case of a 12-year-old Hispanic male with a clinical and molecular diagnosis of Simpson-Golabi-Behmel Syndrome (SGBS) who subsequently developed metastatic medulloblastoma. While individuals with SGBS have been documented to have increased risk for intra-abdominal tumors such as Wilms tumor and neuroblastoma, medulloblastomas, or CNS tumors in general, have not been reported in patients with this syndrome. Our patient was clinically diagnosed with SGBS as an infant. He presented with many of the common features of the syndrome, such as cleft palate, macroglossia, post-axial polydactyly, "coarse" facial features, and ventricular septal defects (VSDs). Molecular testing performed in April 2009 confirmed the SGBS diagnosis. This testing detected a large intragenic deletion in the GPC3 gene (more than 500 kb, 8 exons) extending from intron 2, 37 kb downstream of exon 2, to the 5' end of the gene, deleting exons 1 and 2. However, subsequent testing by gene-centric high-density array comparative genomic hybridization (aCGH) detected a deletion encompassing only exon 2. Therefore, the exact 5' boundary of the deletion cannot currently be determined, due to an apparent complex rearrangement upstream of exon 1. We present this case of metastatic medulloblastoma as a unique malignancy in a patient with SGBS.


Subject(s)
Beckwith-Wiedemann Syndrome/complications , Cerebellar Neoplasms/complications , Chromosomes, Human, X/genetics , Medulloblastoma/secondary , Spinal Cord Neoplasms/complications , Beckwith-Wiedemann Syndrome/genetics , Beckwith-Wiedemann Syndrome/pathology , Cerebellar Neoplasms/pathology , Child , Exons , Glypicans/genetics , Humans , Male , Medulloblastoma/pathology , Mutation , Spinal Cord Neoplasms/pathology
6.
Am J Med Genet A ; 149A(7): 1421-30, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19533771

ABSTRACT

One of our primary goals is to help families who have a child with an 18q deletion anticipate medical issues in order to optimize their child's medical care. To this end we have narrowed the critical regions for four phenotypic features and determined the penetrance for each of those phenotypes when the critical region for that feature is hemizygous. We completed molecular analysis using oligo-array CGH and clinical assessments on 151 individuals with deletions of 18q and made genotype-phenotype correlations defining or narrowing critical regions. These nested regions, all within 18q22.3 to q23, were for kidney malformations, dysmyelination of the brain, growth hormone stimulation response failure, and aural atresia. The region for dysmyelination and growth hormone stimulation response failure were identical and was narrowed to 1.62 Mb, a region containing five known genes. The region for aural atresia was 2.3 Mb and includes an additional three genes. The region for kidney malformations was 3.21 Mb and includes an additional four genes. Penetrance rates were calculated by comparing the number of individuals hemizygous for a critical region with the phenotype to those without the phenotype. The kidney malformations region was 25% penetrant, the dysmyelination region was 100% penetrant, the growth hormone stimulant response failure region was 90% penetrant with variable expressivity, and the aural atresia region was 78% penetrant. Identification of these critical regions suggest possible candidate genes, while penetrance calculations begin to create a predictive phenotypic description based on genotype.


Subject(s)
Chromosome Aberrations , Chromosome Mapping , Chromosomes, Human, Pair 18 , Penetrance , Ear Diseases/congenital , Ear Diseases/epidemiology , Ear Diseases/genetics , Ear, Middle/abnormalities , Genetic Linkage , Genotype , Growth Disorders/congenital , Growth Disorders/epidemiology , Growth Disorders/genetics , Hereditary Central Nervous System Demyelinating Diseases/epidemiology , Hereditary Central Nervous System Demyelinating Diseases/genetics , Humans , Kidney/abnormalities , Kidney Diseases/congenital , Kidney Diseases/epidemiology , Kidney Diseases/genetics , Phenotype
7.
Am J Med Genet A ; 143A(12): 1358-65, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17506108

ABSTRACT

Chromosomal microarray analysis (CMA) by array-based comparative genomic hybridization (CGH) is a new clinical test for the detection of well-characterized genomic disorders caused by chromosomal deletions and duplications that result in gene copy number variation (CNV). This powerful assay detects an abnormality in approximately 7-9% of patients with various clinical phenotypes, including mental retardation. We report here on the results found in a 6-year-old girl with mildly dysmorphic facies, obesity, and marked developmental delay. CMA was requested and showed a heterozygous loss in copy number with clones derived from the genomic region cytogenetically defined as Xq27.3-Xq28. This loss was not cytogenetically visible but was seen on FISH analysis with clones from the region. Further studies confirmed a loss of one copy each of the FMR1, FMR2, and IDS genes (which are mutated in Fragile X syndrome, FRAXE syndrome, and Hunter syndrome, respectively). Skewed X-inactivation has been previously reported in girls with deletions in this region and can lead to a combined Fragile X/Hunter syndrome phenotype in affected females. X-inactivation and iduronate 2-sulfatase (IDS) enzyme activity were therefore examined. X-inactivation was found to be random in the child's peripheral leukocytes, and IDS enzyme activity was approximately half of the normal value. This case demonstrates the utility of CMA both for detecting a submicroscopic chromosomal deletion and for suggesting further testing that could possibly lead to therapeutic options for patients with developmental delay.


Subject(s)
Chromosome Deletion , Chromosomes, Human, X/genetics , Intellectual Disability/genetics , Phenotype , Child , Female , Fragile X Mental Retardation Protein/genetics , Glycoproteins/genetics , Humans , In Situ Hybridization, Fluorescence , Intellectual Disability/pathology , Nuclear Proteins/genetics , Oligonucleotide Array Sequence Analysis , Trans-Activators/genetics , X Chromosome Inactivation/genetics
8.
Am J Med Genet A ; 143A(11): 1181-90, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17486614

ABSTRACT

Most deletions of the long arm of chromosome 18 involve some part of the most distal 30 Mb. We have identified five individuals with cytogenetically diagnosed interstitial deletions that are all proximal to this commonly deleted region. The extent of their deletions was characterized using molecular and molecular cytogenetic techniques. Each participant was assessed under the comprehensive clinical evaluation protocol of the Chromosome 18 Clinical Research Center. Three of the five individuals were found to have apparently identical interstitial deletions between positions of 37.5 and 42.5 Mb (18q12.3-->18q21.1). One individual's deletion was much larger and extended from a more proximal breakpoint position of 23 Mb (18q11.2) to a more distal breakpoint at 43 Mb (18q21.1). The fifth individual had a proximal breakpoint identical to the other three, but a distal breakpoint at 43.5 Mb (18q21.1). The clinical findings were of interest because the three individuals with the smaller deletions lacked major anomalies. All five individuals were developmentally delayed; however, the discrepancy between their expressive and receptive language abilities was striking, with expressive language being much more severely affected. This leads us to hypothesize that there are genes in this region of chromosome 18 that are specific to the neural and motor planning domains necessary for speech. Additionally, this may represent a previously underappreciated syndrome since these children do not have the typical clinical abnormalities that would lead to a chromosome analysis.


Subject(s)
Abnormalities, Multiple/genetics , Chromosomes, Human, Pair 18/genetics , Language Development Disorders/genetics , Sequence Deletion/genetics , Adult , Anthropometry , Behavior , Child , Child, Preschool , Cognition , Female , Humans , Infant , Male , Neuropsychological Tests , Syndrome
9.
Hum Genet ; 110(4): 297-301, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11941477

ABSTRACT

Holoprosencephaly (HPE) is the most commonly occurring congenital structural forebrain anomaly in humans. HPE is associated with mental retardation and craniofacial malformations. The genetic causes of HPE have recently begun to be identified, and we have previously shown that HPE can be caused by haploinsufficiency for SONIC HEDGEHOG ( SHH). We hypothesize that mutations in genes encoding other components of the SHH signaling pathway could also be associated with HPE. PATCHED-1 (PTCH), the receptor for SHH, normally acts to repress SHH signaling. This repression is relieved when SHH binds to PTCH. We analyzed PTCH as a candidate gene for HPE. Four different mutations in PTCHwere detected in five unrelated affected individuals. We predict that by enhancing the repressive activity of PTCH on the SHH pathway, these mutations cause decreased SHH signaling, and HPE results. The mutations could affect the ability of PTCH to bind SHH or perturb the intracellular interactions of PTCH with other proteins involved in SHH signaling. These findings further demonstrate the genetic heterogeneity associated with HPE, as well as showing that mutations in different components of a single signaling pathway can result in the same clinical condition.


Subject(s)
Holoprosencephaly/genetics , Membrane Proteins/genetics , Mutation , Trans-Activators/metabolism , Child , Child, Preschool , Hedgehog Proteins , Humans , Infant , Membrane Proteins/metabolism , Patched Receptors , Patched-1 Receptor , Receptors, Cell Surface
SELECTION OF CITATIONS
SEARCH DETAIL
...