Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(3): 109063, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38420583

ABSTRACT

Eastern North American migratory monarch butterflies exhibit migratory behavioral states in fall and spring characterized by sun-dependent oriented flight. However, it is unclear how monarchs transition between these behavioral states at their overwintering site. Using a modified Mouritsen-Frost flight simulator, we confirm individual directionality and compass-based orientation (leading to group orientation) in fall migrants, and also uncover sustained flight propensity and direction-based flight reinforcement as distinctly migratory behavioral traits. By testing monarchs at their Mexican overwintering sites, we show that overwintering monarchs show reduced propensity for sustained flight and lose individual directionality, leading to the loss of group-level orientation. Overwintering fliers orient axially in a time-of-day dependent manner, which may indicate local versus long-distance directional heading. These results support a model of migratory flight behavior in which modular, state-dependent switches for flight propensity and orientation control are highly dynamic and are controlled in season- and location-dependent manners.

2.
iScience ; 25(5): 104310, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35573206

ABSTRACT

We show that light trespass-a form of nighttime light pollution (NLP)-elicits normal daytime clock-mediated migratory behavior in fall monarch butterflies during their night-cycle. In controlled indoor flight simulator studies isolating the role of NLP on the expression of oriented migratory flight using a time-compensated sun compass,a full-spectrum light source consistent with lights used outdoors at night by the public,triggered proper fall directional flight at night in monarchs. Monarchs remained quiescent when initially placed in the flight simulator in the dark, but flight was immediately triggered when our light source was turned on. This nighttime behavior was identical to that seen in outdoor free-flying fall conspecifics during the day. The light source provided directional cues equivalent to those provided by the sun and could either phase-advance or phase-delay monarchs. Our study highlights the negative consequences of NLP on diurnal animals, especially those that rely on clock-mediated behavior.

3.
STAR Protoc ; 3(4): 101920, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36595924

ABSTRACT

Many animals use sensory cues to guide movement. Testing animals under conditions in which cues can be isolated and manipulated is key for understanding the function of cues. Here, we present a protocol to assess the flight of migratory monarch butterflies (Danaus plexippus). We describe procedures to optimize and conduct trials, especially under indoor conditions. This protocol facilitates testing monarchs in various experimental conditions including during their subjective night when they are not normally flying. For complete details on the use and execution of this protocol, please refer to Parlin et al. (2022).1.


Subject(s)
Butterflies , Animals , Cues , Animal Migration
4.
PLoS One ; 15(9): e0239531, 2020.
Article in English | MEDLINE | ID: mdl-32946526

ABSTRACT

The worldwide shortage of single-use N95 respirators and surgical masks due to the COVID-19 pandemic has forced many health care personnel to use their existing equipment for as long as possible. In many cases, workers cover respirators with available masks in an attempt to extend their effectiveness against the virus. Due to low mask supplies, many people instead are using face coverings improvised from common fabrics. Our goal was to determine what fabrics would be most effective in both practices. Under laboratory conditions, we examined the hydrophobicity of fabrics (cotton, polyester, silk), as measured by their resistance to the penetration of small and aerosolized water droplets, an important transmission avenue for the virus causing COVID-19. We also examined the breathability of these fabrics and their ability to maintain hydrophobicity despite undergoing repeated cleaning. Laboratory-based tests were conducted when fabrics were fashioned as an overlaying barrier for respirators and when constructed as face coverings. When used as material in these two situations, silk was more effective at impeding the penetration and absorption of droplets due to its greater hydrophobicity relative to other tested fabrics. We found that silk face coverings repelled droplets in spray tests as well as disposable single-use surgical masks, and silk face coverings have the added advantage over masks such that they can be sterilized for immediate reuse. We show that silk is a hydrophobic barrier to droplets, can be more breathable than other fabrics that trap humidity, and are re-useable via cleaning. We suggest that silk can serve as an effective material for making hydrophobic barriers that protect respirators, and silk can now be tested under clinical conditions to verify its efficacy for this function. Although respirators are still the most appropriate form of protection, silk face coverings possess properties that make them capable of repelling droplets.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Masks/standards , Pandemics/prevention & control , Personal Protective Equipment/standards , Pneumonia, Viral/prevention & control , Silk/standards , Textiles/standards , COVID-19 , Filtration/methods , Humans , Hydrophobic and Hydrophilic Interactions , Personal Protective Equipment/virology , Respiratory Protective Devices , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...