Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neuromuscul Disord ; 30(5): 368-388, 2020 05.
Article in English | MEDLINE | ID: mdl-32360405

ABSTRACT

Duchenne muscular dystrophy (DMD) is an X-linked recessive muscle wasting disease caused by mutations in the DMD gene, which encodes the large cytoskeletal protein dystrophin. Approximately one-third of DMD patient's exhibit cognitive problems yet it is unknown if cognitive impairments worsen with age. The mdx mouse model is deficient in dystrophin demonstrates cognitive abnormalities, but no studies have investigated this longitudinally. We assessed the consequences of dystrophin deficiency on brain morphology and cognition in male mdx mice. We utilised non-invasive methods to monitor CNS pathology with an aim to identify changes longitudinally (between 4 and 18 months old) which could be used as outcome measures. MRI identified a total brain volume (TBV) increase in control mice with ageing (p < 0.05); but the mdx mice TBV increased significantly more (p < 0.01). Voxel-based morphometry (VBM) identified decreases in grey matter volume, particularly in the hippocampus of the mdx brain, most noticeable from 12 months onwards, as were enlarged lateral ventricles in mdx mice. The caudate putamen of older mdx mice showed increases in T2- relaxometry which may be considered as evidence of increased water content. Hippocampal spatial learning and memory was decreased in mdx mice, particularly long-term memory, which progressively worsened with age. The novel object recognition (NOR) task highlighted elevated anxiety-related behaviour in older mdx mice. Our studies suggest that dystrophin deficiency causes a progressive cognitive impairment in mice (compared to ageing control mice), becoming evident at late disease stages, and may explain why progressive CNS symptoms are not obvious in DMD patients.


Subject(s)
Cognitive Dysfunction , Disease Progression , Dystrophin/deficiency , Gray Matter/pathology , Hippocampus/pathology , Muscular Dystrophy, Duchenne , Animals , Anxiety/physiopathology , Behavior, Animal/physiology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Disease Models, Animal , Gray Matter/diagnostic imaging , Hippocampus/diagnostic imaging , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/complications , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/physiopathology , Spatial Learning/physiology , Spatial Memory/physiology
2.
PLoS One ; 13(6): e0198897, 2018.
Article in English | MEDLINE | ID: mdl-29912990

ABSTRACT

Cardiac failure is a major cause of mortality in patients with Duchenne muscular dystrophy (DMD). Antisense-mediated exon skipping has the ability to correct out-of-frame mutations in DMD to produce truncated but functional dystrophin. Traditional antisense approaches have however been limited by their poor uptake into cardiac muscle. The addition of cell-penetrating peptides to antisense molecules has increased their potency and improved their uptake into all muscles, including the heart. We have investigated the efficacy of the Peptide-conjugated phosphodiamidate morpholino oligomer (P-PMO) Pip6a-PMO, for restoration of cardiac dystrophin and functional rescue in DMD mice- the mdx mouse and the less well characterised Cmah-/-mdx mouse (which carry a human-like mutation in the mouse Cmah gene as well as a mutation in DMD). In our first study male mdx mice were administered Pip6a-PMO, i.v, fortnightly from 12 to 30 weeks of age alongside mock-injected age-matched mdx and C57BL10 controls. Mice received 4 doses of 18 mg/kg followed by 8 doses of 12.5 mg/kg. The cardiac function of the mice was analysed 2 weeks after their final injection by MRI followed by conductance catheter and their muscles were harvested for dystrophin quantification. In the second study, male Cmah-/-mdx mice, received 12.5 mg/kg Pip6a-PMO, i.v fortnightly from 8 to 26 weeks and assessed by MRI at 3 time points (12, 18 and 28 weeks) alongside mock-injected age-matched mdx, C57BL10 and Cmah-/-mdx controls. The mice also underwent MEMRI and conductance catheter at 28 weeks. This allowed us to characterise the cardiac phenotype of Cmah-/-mdx mice as well as assess the effects of P-PMO on cardiac function. Pip6a-PMO treatment resulted in significant restoration of dystrophin in mdx and Cmah-/-mdx mice (37.5% and 51.6%, respectively), which was sufficient to significantly improve cardiac function, ameliorating both right and left ventricular dysfunction. Cmah-/-mdx mice showed an abnormal response to dobutamine stress test and this was completely ameliorated by PIP6a-PMO treatment. These encouraging data suggest that total restoration of dystrophin may not be required to significantly improve cardiac outcome in DMD patients and that it may be realistic to expect functional improvements with modest levels of dystrophin restoration which may be very achievable in future clinical trials.


Subject(s)
Cell-Penetrating Peptides/therapeutic use , Heart Failure/etiology , Morpholinos/therapeutic use , Muscular Dystrophy, Duchenne/complications , Animals , Disease Models, Animal , Dystrophin/metabolism , Exons/genetics , Frameshift Mutation/genetics , Heart/physiopathology , Heart Failure/physiopathology , Heart Failure/prevention & control , Mice , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/physiopathology , Myocardium/metabolism
3.
J Cardiovasc Transl Res ; 8(3): 198-207, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25896492

ABSTRACT

Most patients with Duchenne muscular dystrophy (DMD) will develop cardiomyopathy; however, the evidence for prophylactic treatment of children with cardiac medications is limited. We have used the mdx mouse model of DMD to assess if early combination treatment with beta blocker (BB) and ACE inhibitor (AI) is superior to single treatment with either one of these drugs. Mice were assessed with cardiac MRI (ventricular structure and function, in vivo calcium influx (manganese-enhanced MRI)), pressure-volume loops, and histopathology. Combination treatment did not show benefits over treatment with AI or BB alone. Indeed, some beneficial aspects of BB and AI were lost when used in combination. None of the treatments impacted RV function. Combination treatment had no significant effect on sarcolemmal damage or histopathology. The study suggests that combined BB and AI may not confer an advantage at an early stage in DMD cardiomyopathy. However, limitations of the mdx model should be considered.


Subject(s)
Adrenergic beta-Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Captopril/pharmacology , Cardiomyopathies/prevention & control , Metoprolol/pharmacology , Muscular Dystrophy, Duchenne/drug therapy , Animals , Calcium/metabolism , Cardiac Catheterization , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Disease Models, Animal , Drug Therapy, Combination , Magnetic Resonance Imaging , Male , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/complications , Myocardium/metabolism , Myocardium/pathology , Stroke Volume/drug effects , Time Factors , Ventricular Function, Left/drug effects , Ventricular Function, Right , Ventricular Pressure/drug effects
4.
Neuromuscul Disord ; 25(1): 24-31, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25454734

ABSTRACT

Outcomes of clinical trials depend on the quality of preceding preclinical research, yet functional assays and outcome measures for mouse models of disease are often poorly standardized or inappropriate. Muscular dystrophies are associated with cardiomyopathy so preclinical research requires reliable measures of cardiac function in animal models of the disease. MRI and conductance catheter were compared as preclinical tools to detect cardiomyopathy in two mouse models of muscular dystrophy. Sgcd-/-, mdx and C57Bl10 mice (n = 7/group) were assessed by catheter following MRI at an early stage of cardiomyopathy. Volumetric measurements were higher from MRI compared to catheter. In particular, by catheter, the measurement of end-systolic volume (and its related measures) was disproportionately lower in dystrophic mice compared to controls. This was related to greater calculated parallel conductance in dystrophic mice. Catheter highlighted differences in pressure generation between the two models while MRI detected differences in left ventricular hypertrophy and right ventricular function. Although MRI and conductance catheter provide unique but complimentary information regarding the nature of cardiomyopathy in dystrophic mice, we present the possibility that pathology itself may affect the accuracy of the catheter technique and that particular caution must be taken when interpreting catheter volume data in dystrophic mice.


Subject(s)
Cardiac Catheterization , Cardiomyopathies/diagnosis , Cardiomyopathies/etiology , Magnetic Resonance Imaging, Cine , Muscular Dystrophies/complications , Animals , Cardiac Catheters , Cardiac Volume , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Mice, Knockout , Sarcoglycans/genetics , Ventricular Dysfunction/diagnosis
5.
Skelet Muscle ; 1(1): 13, 2011 Mar 17.
Article in English | MEDLINE | ID: mdl-21798091

ABSTRACT

Mutations in the δ-sarcoglycan gene cause limb-girdle muscular dystrophy 2F (LGMD2F), an autosomal recessive disease that causes progressive weakness and wasting of the proximal limb muscles and often has cardiac involvement. Here we review the clinical implications of LGMD2F and discuss the current understanding of the putative mechanisms underlying its pathogenesis. Preclinical research has benefited enormously from various animal models of δ-sarcoglycan deficiency, which have helped researchers to explore therapeutic approaches for both muscular dystrophy and cardiomyopathy.

SELECTION OF CITATIONS
SEARCH DETAIL
...