Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Front Psychiatry ; 15: 1375751, 2024.
Article in English | MEDLINE | ID: mdl-38938460

ABSTRACT

Background: Individuals with anxiety disorders (ADs) often display hypervigilance to threat information, although this response may be less pronounced following psychotherapy. This study aims to investigate the unconscious recognition performance of facial expressions in patients with panic disorder (PD) post-treatment, shedding light on alterations in their emotional processing biases. Methods: Patients with PD (n=34) after (exposure-based) cognitive behavior therapy and healthy controls (n=43) performed a subliminal affective recognition task. Emotional facial expressions (fearful, happy, or mirrored) were displayed for 33 ms and backwardly masked by a neutral face. Participants completed a forced choice task to discriminate the briefly presented facial stimulus and an uncovered condition where only the neutral mask was shown. We conducted a secondary analysis to compare groups based on their four possible response types under the four stimulus conditions and examined the correlation of the false alarm rate for fear responses to non-fearful (happy, mirrored, and uncovered) stimuli with clinical anxiety symptoms. Results: The patient group showed a unique selection pattern in response to happy expressions, with significantly more correct "happy" responses compared to controls. Additionally, lower severity of anxiety symptoms after psychotherapy was associated with a decreased false fear response rate with non-threat presentations. Conclusion: These data suggest that patients with PD exhibited a "happy-face recognition advantage" after psychotherapy. Less symptoms after treatment were related to a reduced fear bias. Thus, a differential facial emotion detection task could be a suitable tool to monitor response patterns and biases in individuals with ADs in the context of psychotherapy.

2.
Front Psychiatry ; 15: 1402818, 2024.
Article in English | MEDLINE | ID: mdl-38938468

ABSTRACT

Background: In schizophrenia patients, spontaneous speech production has been hypothesized as correlating with right hemispheric activation, including the inferior frontal and superior temporal gyri as speech-relevant areas. However, robust evidence for this association is still missing. The aim of the present fMRI study is to examine BOLD signal changes during natural, fluent speech production in patients with schizophrenia in the chronic phase of their disease. Methods: Using a case-control design, the study included 15 right-handed patients with schizophrenia spectrum disorders as well as 15 healthy controls. The participants described eight pictures from the Thematic Apperception Test for 1 min each, while BOLD signal changes were measured with 3T fMRI. The occurrence of positive and negative formal thought disorders was determined using standardized psychopathological assessments. Results: We found significant BOLD signal changes during spontaneous speech production in schizophrenia patients compared to healthy controls, particularly in the right hemispheric network. A post-hoc analysis showed that this right-hemispheric lateralization was mainly driven by activation during experimental rests. Furthermore, the TLI sum value in patients correlated negatively with BOLD signal changes in the right Rolandic operculum. Conclusions: Possible underlying factors for this inverse right-hemispheric lateralization of speech-associated areas are structural changes and transmitter system alterations, as well as a lack of neural downregulation in schizophrenia patients during rest periods due to dysfunctional executive functions. When examining spontaneous speech as the most natural form of language, other influencing factors, such as social cognition or emotional processing, should be considered. Our results indicate that future studies should consider group differences during rest, which might provide additional information typically covered in differential contrasts.

3.
Article in English | MEDLINE | ID: mdl-38914850

ABSTRACT

While most people are right-handed, a minority are left-handed or mixed-handed. It has been suggested that mental and developmental disorders are associated with increased prevalence of left-handedness and mixed-handedness. However, substantial heterogeneity exists across disorders, indicating that not all disorders are associated with a considerable shift away from right-handedness. Increased frequencies in left- and mixed-handedness have also been associated with more severe clinical symptoms, indicating that symptom severity rather than diagnosis explains the high prevalence of non-right-handedness in mental disorders. To address this issue, the present study investigated the association between handedness and measures of stress reactivity, depression, mania, anxiety, and positive and negative symptoms in a large sample of 994 healthy controls and 1213 patients with DSM IV affective disorders, schizoaffective disorders, or schizophrenia. A series of complementary analyses revealed lower lateralization and a higher percentage of mixed-handedness in patients with major depression (14.9%) and schizophrenia (24.0%) compared to healthy controls (12%). For patients with schizophrenia, higher symptom severity was associated with an increasing tendency towards left-handedness. No associations were found for patients diagnosed with major depression, bipolar disorder, or schizoaffective disorder. In healthy controls, no association between hand preference and symptoms was evident. Taken together, these findings suggest that both diagnosis and symptom severity are relevant for the shift away from right-handedness in mental disorders like schizophrenia and major depression.

4.
Neuroimage ; 295: 120639, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38796977

ABSTRACT

Data-based predictions of individual Cognitive Behavioral Therapy (CBT) treatment response are a fundamental step towards precision medicine. Past studies demonstrated only moderate prediction accuracy (i.e. ability to discriminate between responders and non-responders of a given treatment) when using clinical routine data such as demographic and questionnaire data, while neuroimaging data achieved superior prediction accuracy. However, these studies may be considerably biased due to very limited sample sizes and bias-prone methodology. Adequately powered and cross-validated samples are a prerequisite to evaluate predictive performance and to identify the most promising predictors. We therefore analyzed resting state functional magnet resonance imaging (rs-fMRI) data from two large clinical trials to test whether functional neuroimaging data continues to provide good prediction accuracy in much larger samples. Data came from two distinct German multicenter studies on exposure-based CBT for anxiety disorders, the Protect-AD and SpiderVR studies. We separately and independently preprocessed baseline rs-fMRI data from n = 220 patients (Protect-AD) and n = 190 patients (SpiderVR) and extracted a variety of features, including ROI-to-ROI and edge-functional connectivity, sliding-windows, and graph measures. Including these features in sophisticated machine learning pipelines, we found that predictions of individual outcomes never significantly differed from chance level, even when conducting a range of exploratory post-hoc analyses. Moreover, resting state data never provided prediction accuracy beyond the sociodemographic and clinical data. The analyses were independent of each other in terms of selecting methods to process resting state data for prediction input as well as in the used parameters of the machine learning pipelines, corroborating the external validity of the results. These similar findings in two independent studies, analyzed separately, urge caution regarding the interpretation of promising prediction results based on neuroimaging data from small samples and emphasizes that some of the prediction accuracies from previous studies may result from overestimation due to homogeneous data and weak cross-validation schemes. The promise of resting-state neuroimaging data to play an important role in the prediction of CBT treatment outcomes in patients with anxiety disorders remains yet to be delivered.


Subject(s)
Anxiety Disorders , Cognitive Behavioral Therapy , Machine Learning , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Female , Male , Anxiety Disorders/therapy , Anxiety Disorders/diagnostic imaging , Anxiety Disorders/physiopathology , Adult , Cognitive Behavioral Therapy/methods , Middle Aged , Treatment Outcome , Brain/diagnostic imaging , Brain/physiopathology , Young Adult , Implosive Therapy/methods
5.
Psychol Med ; : 1-11, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801091

ABSTRACT

BACKGROUND: Individuals at risk for bipolar disorder (BD) have a wide range of genetic and non-genetic risk factors, like a positive family history of BD or (sub)threshold affective symptoms. Yet, it is unclear whether these individuals at risk and those diagnosed with BD share similar gray matter brain alterations. METHODS: In 410 male and female participants aged 17-35 years, we compared gray matter volume (3T MRI) between individuals at risk for BD (as assessed using the EPIbipolar scale; n = 208), patients with a DSM-IV-TR diagnosis of BD (n = 87), and healthy controls (n = 115) using voxel-based morphometry in SPM12/CAT12. We applied conjunction analyses to identify similarities in gray matter volume alterations in individuals at risk and BD patients, relative to healthy controls. We also performed exploratory whole-brain analyses to identify differences in gray matter volume among groups. ComBat was used to harmonize imaging data from seven sites. RESULTS: Both individuals at risk and BD patients showed larger volumes in the right putamen than healthy controls. Furthermore, individuals at risk had smaller volumes in the right inferior occipital gyrus, and BD patients had larger volumes in the left precuneus, compared to healthy controls. These findings were independent of course of illness (number of lifetime manic and depressive episodes, number of hospitalizations), comorbid diagnoses (major depressive disorder, attention-deficit hyperactivity disorder, anxiety disorder, eating disorder), familial risk, current disease severity (global functioning, remission status), and current medication intake. CONCLUSIONS: Our findings indicate that alterations in the right putamen might constitute a vulnerability marker for BD.

6.
Mol Psychiatry ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693319

ABSTRACT

Reduced processing speed is a core deficit in major depressive disorder (MDD) and has been linked to altered structural brain network connectivity. Ample evidence highlights the involvement of genetic-immunological processes in MDD and specific depressive symptoms. Here, we extended these findings by examining associations between polygenic scores for tumor necrosis factor-α blood levels (TNF-α PGS), structural brain connectivity, and processing speed in a large sample of MDD patients. Processing speed performance of n = 284 acutely depressed, n = 177 partially and n = 198 fully remitted patients, and n = 743 healthy controls (HC) was estimated based on five neuropsychological tests. Network-based statistic was used to identify a brain network associated with processing speed. We employed general linear models to examine the association between TNF-α PGS and processing speed. We investigated whether network connectivity mediates the association between TNF-α PGS and processing speed. We identified a structural network positively associated with processing speed in the whole sample. We observed a significant negative association between TNF-α PGS and processing speed in acutely depressed patients, whereas no association was found in remitted patients and HC. The mediation analysis revealed that brain connectivity partially mediated the association between TNF-α PGS and processing speed in acute MDD. The present study provides evidence that TNF-α PGS is associated with decreased processing speed exclusively in patients with acute depression. This association was partially mediated by structural brain connectivity. Using multimodal data, the current findings advance our understanding of cognitive dysfunction in MDD and highlight the involvement of genetic-immunological processes in its pathomechanisms.

8.
Mol Psychiatry ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553539

ABSTRACT

Recurrences of depressive episodes in major depressive disorder (MDD) can be explained by the diathesis-stress model, suggesting that stressful life events (SLEs) can trigger MDD episodes in individuals with pre-existing vulnerabilities. However, the longitudinal neurobiological impact of SLEs on gray matter volume (GMV) in MDD and its interaction with early-life adversity remains unresolved. In 754 participants aged 18-65 years (362 MDD patients; 392 healthy controls; HCs), we assessed longitudinal associations between SLEs (Life Events Questionnaire) and whole-brain GMV changes (3 Tesla MRI) during a 2-year interval, using voxel-based morphometry in SPM12/CAT12. We also explored the potential moderating role of childhood maltreatment (Childhood Trauma Questionnaire) on these associations. Over the 2-year interval, HCs demonstrated significant GMV reductions in the middle frontal, precentral, and postcentral gyri in response to higher levels of SLEs, while MDD patients showed no such GMV changes. Childhood maltreatment did not moderate these associations in either group. However, MDD patients who had at least one depressive episode during the 2-year interval, compared to those who did not, or HCs, showed GMV increases in the middle frontal, precentral, and postcentral gyri associated with an increase in SLEs and childhood maltreatment. Our findings indicate distinct GMV changes in response to SLEs between MDD patients and HCs. GMV decreases in HCs may represent adaptive responses to stress, whereas GMV increases in MDD patients with both childhood maltreatment and a depressive episode during the 2-year interval may indicate maladaptive changes, suggesting a neural foundation for the diathesis-stress model in MDD recurrences.

9.
J Affect Disord ; 355: 12-21, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38548192

ABSTRACT

BACKGROUND: Depressive symptoms seem to be interrelated in a complex and self-reinforcing way. To gain a better understanding of this complexity, the inclusion of theoretically relevant constructs (such as risk and protective factors) offers a comprehensive view into the complex mechanisms underlying depression. METHODS: Cross-sectional data from individuals diagnosed with a major depressive disorder (N = 986) and healthy controls (N = 1049) were analyzed. Participants self-reported their depressive symptoms, as well as several risk factors and protective factors. Regularized partial correlation networks were estimated for each group and compared using a network comparison test. RESULTS: Symptoms of depression were more strongly connected in the network of depressed patients than in healthy controls. Among the risk factors, perceived stress, the experience of negative life events, emotional neglect, and emotional abuse were the most centrally embedded in both networks. However, the centrality of risk factors did not significantly differ between the two groups. Among the protective factors, social support, personal competence, and acceptance were the most central in both networks, where the latter was significantly more strongly associated with the symptom of self-hate in depressed patients. CONCLUSION: The network analysis revealed that key symptoms of depression were more strongly connected for depressed patients than for healthy controls, and that risk and protective factors play an important role, particularly perceived stress in both groups and an accepting attitude for depressed patients. However, the purpose of this study is hypothesis generating and assisting in the potential selection of non-symptom nodes for future research.


Subject(s)
Depression , Depressive Disorder, Major , Humans , Depression/etiology , Depressive Disorder, Major/epidemiology , Protective Factors , Cross-Sectional Studies , Self Report
10.
Sci Rep ; 14(1): 4632, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38409306

ABSTRACT

The brain can adapt its expectations about the relative timing of actions and their sensory outcomes in a process known as temporal recalibration. This might occur as the recalibration of timing between the sensory (e.g. visual) outcome and (1) the motor act (sensorimotor) or (2) tactile/proprioceptive information (inter-sensory). This fMRI recalibration study investigated sensorimotor contributions to temporal recalibration by comparing active and passive conditions. Subjects were repeatedly exposed to delayed (150 ms) or undelayed visual stimuli, triggered by active or passive button presses. Recalibration effects were tested in delay detection tasks, including visual and auditory outcomes. We showed that both modalities were affected by visual recalibration. However, an active advantage was observed only in visual conditions. Recalibration was generally associated with the left cerebellum (lobules IV, V and vermis) while action related activation (active > passive) occurred in the right middle/superior frontal gyri during adaptation and test phases. Recalibration transfer from vision to audition was related to action specific activations in the cingulate cortex, the angular gyrus and left inferior frontal gyrus. Our data provide new insights in sensorimotor contributions to temporal recalibration via the middle/superior frontal gyri and inter-sensory contributions mediated by the cerebellum.


Subject(s)
Magnetic Resonance Imaging , Psychomotor Performance , Humans , Psychomotor Performance/physiology , Feedback, Sensory/physiology , Brain/diagnostic imaging , Parietal Lobe/physiology
11.
Neuropsychopharmacology ; 49(5): 814-823, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38332015

ABSTRACT

Patients with bipolar disorder (BD) show alterations in both gray matter volume (GMV) and white matter (WM) integrity compared with healthy controls (HC). However, it remains unclear whether the phenotypically distinct BD subtypes (BD-I and BD-II) also exhibit brain structural differences. This study investigated GMV and WM differences between HC, BD-I, and BD-II, along with clinical and genetic associations. N = 73 BD-I, n = 63 BD-II patients and n = 136 matched HC were included. Using voxel-based morphometry and tract-based spatial statistics, main effects of group in GMV and fractional anisotropy (FA) were analyzed. Associations between clinical and genetic features and GMV or FA were calculated using regression models. For FA but not GMV, we found significant differences between groups. BD-I patients showed lower FA compared with BD-II patients (ptfce-FWE = 0.006), primarily in the anterior corpus callosum. Compared with HC, BD-I patients exhibited lower FA in widespread clusters (ptfce-FWE < 0.001), including almost all major projection, association, and commissural fiber tracts. BD-II patients also demonstrated lower FA compared with HC, although less pronounced (ptfce-FWE = 0.049). The results remained unchanged after controlling for clinical and genetic features, for which no independent associations with FA or GMV emerged. Our findings suggest that, at a neurobiological level, BD subtypes may reflect distinct degrees of disease expression, with increasing WM microstructure disruption from BD-II to BD-I. This differential magnitude of microstructural alterations was not clearly linked to clinical and genetic variables. These findings should be considered when discussing the classification of BD subtypes within the spectrum of affective disorders.


Subject(s)
Bipolar Disorder , White Matter , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/genetics , Gray Matter/diagnostic imaging , Brain , White Matter/diagnostic imaging , Cerebral Cortex , Anisotropy
12.
Sci Rep ; 14(1): 2627, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38297015

ABSTRACT

Core symptoms in patients with schizophrenia spectrum disorders (SSD), like hallucinations or ego-disturbances, have been associated with a failure of internal forward models to predict the sensory outcomes of self-generated actions. Importantly, forward model predictions must also be able to flexibly recalibrate to changing environmental conditions, for example to account for additional delays between action and outcome. We investigated whether transcranial direct current stimulation (tDCS) can be used to improve these sensorimotor temporal recalibration mechanisms in patients and healthy individuals. While receiving tDCS on the cerebellum, temporo-parietal junction, supplementary motor area, or sham stimulation, patients with SSD and healthy control participants were repeatedly exposed to delays between actively or passively elicited button presses and auditory outcomes. Effects of this procedure on temporal perception were assessed with a delay detection task. Similar recalibration outcomes and faciliatory effects of cerebellar tDCS on recalibration were observed in SSD and healthy individuals. Our findings indicate that sensorimotor recalibration mechanisms may be preserved in SSD and highlight the importance of the cerebellum in both patients and healthy individuals for this process. They further suggest that cerebellar tDCS could be a promising tool for addressing deficits in action-outcome monitoring and related adaptive sensorimotor processes in SSD.


Subject(s)
Motor Cortex , Schizophrenia , Transcranial Direct Current Stimulation , Humans , Schizophrenia/diagnosis , Transcranial Direct Current Stimulation/methods , Hallucinations/complications , Cerebellum/physiology
13.
JAMA Psychiatry ; 81(4): 386-395, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38198165

ABSTRACT

Importance: Biological psychiatry aims to understand mental disorders in terms of altered neurobiological pathways. However, for one of the most prevalent and disabling mental disorders, major depressive disorder (MDD), no informative biomarkers have been identified. Objective: To evaluate whether machine learning (ML) can identify a multivariate biomarker for MDD. Design, Setting, and Participants: This study used data from the Marburg-Münster Affective Disorders Cohort Study, a case-control clinical neuroimaging study. Patients with acute or lifetime MDD and healthy controls aged 18 to 65 years were recruited from primary care and the general population in Münster and Marburg, Germany, from September 11, 2014, to September 26, 2018. The Münster Neuroimaging Cohort (MNC) was used as an independent partial replication sample. Data were analyzed from April 2022 to June 2023. Exposure: Patients with MDD and healthy controls. Main Outcome and Measure: Diagnostic classification accuracy was quantified on an individual level using an extensive ML-based multivariate approach across a comprehensive range of neuroimaging modalities, including structural and functional magnetic resonance imaging and diffusion tensor imaging as well as a polygenic risk score for depression. Results: Of 1801 included participants, 1162 (64.5%) were female, and the mean (SD) age was 36.1 (13.1) years. There were a total of 856 patients with MDD (47.5%) and 945 healthy controls (52.5%). The MNC replication sample included 1198 individuals (362 with MDD [30.1%] and 836 healthy controls [69.9%]). Training and testing a total of 4 million ML models, mean (SD) accuracies for diagnostic classification ranged between 48.1% (3.6%) and 62.0% (4.8%). Integrating neuroimaging modalities and stratifying individuals based on age, sex, treatment, or remission status does not enhance model performance. Findings were replicated within study sites and also observed in structural magnetic resonance imaging within MNC. Under simulated conditions of perfect reliability, performance did not significantly improve. Analyzing model errors suggests that symptom severity could be a potential focus for identifying MDD subgroups. Conclusion and Relevance: Despite the improved predictive capability of multivariate compared with univariate neuroimaging markers, no informative individual-level MDD biomarker-even under extensive ML optimization in a large sample of diagnosed patients-could be identified.


Subject(s)
Depressive Disorder, Major , Humans , Female , Male , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/pathology , Diffusion Tensor Imaging , Cohort Studies , Reproducibility of Results , Magnetic Resonance Imaging , Biomarkers
14.
Psychol Med ; 54(6): 1215-1227, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37859592

ABSTRACT

BACKGROUND: Schizotypy represents an index of psychosis-proneness in the general population, often associated with childhood trauma exposure. Both schizotypy and childhood trauma are linked to structural brain alterations, and it is possible that trauma exposure moderates the extent of brain morphological differences associated with schizotypy. METHODS: We addressed this question using data from a total of 1182 healthy adults (age range: 18-65 years old, 647 females/535 males), pooled from nine sites worldwide, contributing to the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Schizotypy working group. All participants completed both the Schizotypal Personality Questionnaire Brief version (SPQ-B), and the Childhood Trauma Questionnaire (CTQ), and underwent a 3D T1-weighted brain MRI scan from which regional indices of subcortical gray matter volume and cortical thickness were determined. RESULTS: A series of multiple linear regressions revealed that differences in cortical thickness in four regions-of-interest were significantly associated with interactions between schizotypy and trauma; subsequent moderation analyses indicated that increasing levels of schizotypy were associated with thicker left caudal anterior cingulate gyrus, right middle temporal gyrus and insula, and thinner left caudal middle frontal gyrus, in people exposed to higher (but not low or average) levels of childhood trauma. This was found in the context of morphological changes directly associated with increasing levels of schizotypy or increasing levels of childhood trauma exposure. CONCLUSIONS: These results suggest that alterations in brain regions critical for higher cognitive and integrative processes that are associated with schizotypy may be enhanced in individuals exposed to high levels of trauma.


Subject(s)
Adverse Childhood Experiences , Psychological Tests , Schizotypal Personality Disorder , Self Report , Adult , Male , Female , Humans , Adolescent , Young Adult , Middle Aged , Aged , Schizotypal Personality Disorder/diagnostic imaging , Schizotypal Personality Disorder/psychology , Brain/diagnostic imaging , Gray Matter , Magnetic Resonance Imaging/methods
15.
Mol Psychiatry ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38036604

ABSTRACT

Up to 70% of patients with major depressive disorder present with psychomotor disturbance (PmD), but at the present time understanding of its pathophysiology is limited. In this study, we capitalized on a large sample of patients to examine the neural correlates of PmD in depression. This study included 820 healthy participants and 699 patients with remitted (n = 402) or current (n = 297) depression. Patients were further categorized as having psychomotor retardation, agitation, or no PmD. We compared resting-state functional connectivity (ROI-to-ROI) between nodes of the cerebral motor network between the groups, including primary motor cortex, supplementary motor area, sensory cortex, superior parietal lobe, caudate, putamen, pallidum, thalamus, and cerebellum. Additionally, we examined network topology of the motor network using graph theory. Among the currently depressed 55% had PmD (15% agitation, 29% retardation, and 11% concurrent agitation and retardation), while 16% of the remitted patients had PmD (8% retardation and 8% agitation). When compared with controls, currently depressed patients with PmD showed higher thalamo-cortical and pallido-cortical connectivity, but no network topology alterations. Currently depressed patients with retardation only had higher thalamo-cortical connectivity, while those with agitation had predominant higher pallido-cortical connectivity. Currently depressed patients without PmD showed higher thalamo-cortical, pallido-cortical, and cortico-cortical connectivity, as well as altered network topology compared to healthy controls. Remitted patients with PmD showed no differences in single connections but altered network topology, while remitted patients without PmD did not differ from healthy controls in any measure. We found evidence for compensatory increased cortico-cortical resting-state functional connectivity that may prevent psychomotor disturbance in current depression, but may perturb network topology. Agitation and retardation show specific connectivity signatures. Motor network topology is slightly altered in remitted patients arguing for persistent changes in depression. These alterations in functional connectivity may be addressed with non-invasive brain stimulation.

16.
Hum Brain Mapp ; 44(17): 6198-6213, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37792296

ABSTRACT

Self-initiated movements are accompanied by an efference copy, a motor command sent from motor regions to the sensory cortices, containing a prediction of the movement's sensory outcome. Previous studies have proposed pre-motor event-related potentials (ERPs), including the readiness potential (RP) and its lateralized sub-component (LRP), as potential neural markers of action feedback prediction. However, it is not known how specific these neural markers are for voluntary (active) movements as compared to involuntary (passive) movements, which produce much of the same sensory feedback (tactile, proprioceptive) but are not accompanied by an efference copy. The goal of the current study was to investigate how active and passive movements are distinguishable from premotor electroencephalography (EEG), and to examine if this change of neural activity differs when participants engage in tasks that differ in their expectation of sensory outcomes. Participants made active (self-initiated) or passive (finger moved by device) finger movements that led to either visual or auditory stimuli (100 ms delay), or to no immediate contingency effects (control). We investigated the time window before the movement onset by measuring pre-movement ERPs time-locked to the button press. For RP, we observed an interaction between task and movement. This was driven by movement differences in the visual and auditory but not the control conditions. LRP conversely only showed a main effect of movement. We then used multivariate pattern analysis to decode movements (active vs. passive). The results revealed ramping decoding for all tasks from around -800 ms onwards up to an accuracy of approximately 85% at the movement. Importantly, similar to RP, we observed lower decoding accuracies for the control condition than the visual and auditory conditions, but only shortly (from -200 ms) before the button press. We also decoded visual vs. auditory conditions. Here, task is decodable for both active and passive conditions, but the active condition showed increased decoding shortly before the button press. Taken together, our results provide robust evidence that pre-movement EEG activity may represent action-feedback prediction in which information about the subsequent sensory outcome is encoded.


Subject(s)
Electroencephalography , Evoked Potentials , Humans , Movement , Fingers , Upper Extremity
17.
Hum Brain Mapp ; 44(17): 6227-6244, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37818950

ABSTRACT

When we perform an action, its sensory outcomes usually follow shortly after. This characteristic temporal relationship aids in distinguishing self- from externally generated sensory input. To preserve this ability under dynamically changing environmental conditions, our expectation of the timing between action and outcome must be able to recalibrate, for example, when the outcome is consistently delayed. Until now, it remains unclear whether this process, known as sensorimotor temporal recalibration, can be specifically attributed to recalibration of sensorimotor (action-outcome) predictions, or whether it may be partly due to the recalibration of expectations about the intersensory (e.g., audio-tactile) timing. Therefore, we investigated the behavioral and neural correlates of temporal recalibration and differences in sensorimotor and intersensory contexts. During fMRI, subjects were exposed to delayed or undelayed tones elicited by actively or passively generated button presses. While recalibration of the expected intersensory timing (i.e., between the tactile sensation during the button movement and the tones) can be expected to occur during both active and passive movements, recalibration of sensorimotor predictions should be limited to active movement conditions. Effects of this procedure on auditory temporal perception and the modality-transfer to visual perception were tested in a delay detection task. Across both contexts, we found recalibration to be associated with activations in hippocampus and cerebellum. Context-dependent differences emerged in terms of stronger behavioral recalibration effects in sensorimotor conditions and were captured by differential activation pattern in frontal cortices, cerebellum, and sensory processing regions. These findings highlight the role of the hippocampus in encoding and retrieving newly acquired temporal stimulus associations during temporal recalibration. Furthermore, recalibration-related activations in the cerebellum may reflect the retention of multiple representations of temporal stimulus associations across both contexts. Finally, we showed that sensorimotor predictions modulate recalibration-related processes in frontal, cerebellar, and sensory regions, which potentially account for the perceptual advantage of sensorimotor versus intersensory temporal recalibration.


Subject(s)
Psychomotor Performance , Time Perception , Humans , Psychomotor Performance/physiology , Feedback , Visual Perception/physiology , Time Perception/physiology , Auditory Perception , Touch
18.
Mol Psychiatry ; 28(11): 4613-4621, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37714950

ABSTRACT

Childhood maltreatment (CM) has been associated with changes in structural brain connectivity even in the absence of mental illness. Social support, an important protective factor in the presence of childhood maltreatment, has been positively linked to white matter integrity. However, the shared effects of current social support and CM and their association with structural connectivity remain to be investigated. They might shed new light on the neurobiological basis of the protective mechanism of social support. Using connectome-based predictive modeling (CPM), we analyzed structural connectomes of N = 904 healthy adults derived from diffusion-weighted imaging. CPM predicts phenotypes from structural connectivity through a cross-validation scheme. Distinct and shared networks of white matter tracts predicting childhood trauma questionnaire scores and the social support questionnaire were identified. Additional analyses were applied to assess the stability of the results. CM and social support were predicted significantly from structural connectome data (all rs ≥ 0.119, all ps ≤ 0.016). Edges predicting CM and social support were inversely correlated, i.e., positively correlated with CM and negatively with social support, and vice versa, with a focus on frontal and temporal regions including the insula and superior temporal lobe. CPM reveals the predictive value of the structural connectome for CM and current social support. Both constructs are inversely associated with connectivity strength in several brain tracts. While this underlines the interconnectedness of these experiences, it suggests social support acts as a protective factor following adverse childhood experiences, compensating for brain network alterations. Future longitudinal studies should focus on putative moderating mechanisms buffering these adverse experiences.


Subject(s)
Child Abuse , Connectome , Psychological Tests , Self Report , White Matter , Adult , Humans , Child , Connectome/methods , Magnetic Resonance Imaging , Brain
19.
J Psychiatry Neurosci ; 48(4): E245-E254, 2023.
Article in English | MEDLINE | ID: mdl-37402578

ABSTRACT

BACKGROUND: Deficient causality perception and attribution may underlie key symptoms of schizophrenia spectrum disorder (SSD), such as delusions and ideas of reference. Although transcranial direct current stimulation (tDCS) can increase the influence of spatial information on perceptual causality judgments among healthy participants, its effect among patients with SSD remains unknown. We sought to determine whether tDCS modulates the contribution of stimulus characteristics to perceptual causality judgments among patients with SSD; we predicted that right parietal tDCS would increase the influence of spatial stimulus characteristics on patients' causality perception. METHODS: Patients with SSD received frontal, parietal, frontoparietal and sham tDCS in 4 separate sessions. Pre- and post-tDCS, patients viewed video clips of ball A colliding with ball B. Spatial linearity (ball B's angle of egress) and temporal contiguity (delay between collision and ball B's movement) varied parametrically. After each launching event, patients rated perceived causality. RESULTS: Among 19 patients with SSD, we found a brain region-dependent effect of tDCS regarding sensitivity to violations of spatial linearity. After right parietal anodal tDCS, the influence of angle variations on patients' perceptual causality judgments increased, reflected by a higher probability of perceived causality for stimuli with small angles and a lower probability of perceived causality for stimuli with high angles. CONCLUSION: Transcranial direct current stimulation increased the influence of spatial stimulus characteristics on causality perception among patients with SSD. Future research should explore potential links between tDCS-induced changes in basic perceptual processes and clinical symptoms, such as delusions and ideas of reference.


Subject(s)
Schizophrenia , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/adverse effects , Judgment/physiology , Schizophrenia/therapy , Brain , Social Perception
20.
Transl Psychiatry ; 13(1): 261, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37460460

ABSTRACT

Temporal neural synchrony disruption can be linked to a variety of symptoms of major depressive disorder (MDD), including mood rigidity and the inability to break the cycle of negative emotion or attention biases. This might imply that altered dynamic neural synchrony may play a role in the persistence and exacerbation of MDD symptoms. Our study aimed to investigate the changes in whole-brain dynamic patterns of the brain functional connectivity and activity related to depression using the hidden Markov model (HMM) on resting-state functional magnetic resonance imaging (rs-fMRI) data. We compared the patterns of brain functional dynamics in a large sample of 314 patients with MDD (65.9% female; age (mean ± standard deviation): 35.9 ± 13.4) and 498 healthy controls (59.4% female; age: 34.0 ± 12.8). The HMM model was used to explain variations in rs-fMRI functional connectivity and averaged functional activity across the whole-brain by using a set of six unique recurring states. This study compared the proportion of time spent in each state and the average duration of visits to each state to assess stability between different groups. Compared to healthy controls, patients with MDD showed significantly higher proportional time spent and temporal stability in a state characterized by weak functional connectivity within and between all brain networks and relatively strong averaged functional activity of regions located in the somatosensory motor (SMN), salience (SN), and dorsal attention (DAN) networks. Both proportional time spent and temporal stability of this brain state was significantly associated with depression severity. Healthy controls, in contrast to the MDD group, showed proportional time spent and temporal stability in a state with relatively strong functional connectivity within and between all brain networks but weak averaged functional activity across the whole brain. These findings suggest that disrupted brain functional synchrony across time is present in MDD and associated with current depression severity.


Subject(s)
Depressive Disorder, Major , Humans , Female , Young Adult , Adult , Middle Aged , Male , Depressive Disorder, Major/diagnostic imaging , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain Mapping , Affect , Neural Pathways
SELECTION OF CITATIONS
SEARCH DETAIL
...