Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Clin Oncol ; 37(15): 1316-1325, 2019 05 20.
Article in English | MEDLINE | ID: mdl-30943123

ABSTRACT

PURPOSE: Patients with centrally located early-stage non-small-cell lung cancer (NSCLC) are at a higher risk of toxicity from high-dose ablative radiotherapy. NRG Oncology/RTOG 0813 was a phase I/II study designed to determine the maximum tolerated dose (MTD), efficacy, and toxicity of stereotactic body radiotherapy (SBRT) for centrally located NSCLC. MATERIALS AND METHODS: Medically inoperable patients with biopsy-proven, positron emission tomography-staged T1 to 2 (≤ 5 cm) N0M0 centrally located NSCLC were accrued into a dose-escalating, five-fraction SBRT schedule that ranged from 10 to 12 Gy/fraction (fx) delivered over 1.5 to 2 weeks. Dose-limiting toxicity (DLT) was defined as any treatment-related grade 3 or worse predefined toxicity that occurred within the first year. MTD was defined as the SBRT dose at which the probability of DLT was closest to 20% without exceeding it. RESULTS: One hundred twenty patients were accrued between February 2009 and September 2013. Patients were elderly, there were slightly more females, and the majority had a performance status of 0 to 1. Most cancers were T1 (65%) and squamous cell (45%). Organs closest to planning target volume/most at risk were the main bronchus and large vessels. Median follow-up was 37.9 months. Five patients experienced DLTs; MTD was 12.0 Gy/fx, which had a probability of a DLT of 7.2% (95% CI, 2.8% to 14.5%). Two-year rates for the 71 evaluable patients in the 11.5 and 12.0 Gy/fx cohorts were local control, 89.4% (90% CI, 81.6% to 97.4%) and 87.9% (90% CI, 78.8% to 97.0%); overall survival, 67.9% (95% CI, 50.4% to 80.3%) and 72.7% (95% CI, 54.1% to 84.8%); and progression-free survival, 52.2% (95% CI, 35.3% to 66.6%) and 54.5% (95% CI, 36.3% to 69.6%), respectively. CONCLUSION: The MTD for this study was 12.0 Gy/fx; it was associated with 7.2% DLTs and high rates of tumor control. Outcomes in this medically inoperable group of mostly elderly patients with comorbidities were comparable with that of patients with peripheral early-stage tumors.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/radiotherapy , Radiosurgery/methods , Aged , Aged, 80 and over , Dose Fractionation, Radiation , Dose-Response Relationship, Radiation , Female , Humans , Male , Middle Aged , Radiosurgery/adverse effects , Treatment Outcome
2.
JAMA Oncol ; 4(9): 1263-1266, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29852037

ABSTRACT

Importance: Stereotactic body radiation therapy (SBRT) has become a standard treatment for patients with medically inoperable early-stage lung cancer. However, its effectiveness in patients medically suitable for surgery is unclear. Objective: To evaluate whether noninvasive SBRT delivered on an outpatient basis can safely eradicate lung cancer and cure selected patients with operable lung cancer, obviating the need for surgical resection. Design, Setting, and Participants: Single-arm phase 2 NRG Oncology Radiation Therapy Oncology Group 0618 study enrolled patients from December 2007 to May 2010 with median follow-up of 48.1 months (range, 15.4-73.7 months). The setting was a multicenter North American academic and community practice cancer center consortium. Patients had operable biopsy-proven peripheral T1 to T2, N0, M0 non-small cell tumors no more than 5 cm in diameter, forced expiratory volume in 1 second (FEV1) and diffusing capacity greater than 35% predicted, arterial oxygen tension greater than 60 mm Hg, arterial carbon dioxide tension less than 50 mm Hg, and no severe medical problems. The data analysis was performed in October 2014. Interventions: The SBRT prescription dose was 54 Gy delivered in 3 18-Gy fractions over 1.5 to 2.0 weeks. Main Outcomes and Measures: Primary end point was primary tumor control, with survival, adverse events, and the incidence and outcome of surgical salvage as secondary end points. Results: Of 33 patients accrued, 26 were evaluable (23 T1 and 3 T2 tumors; 15 [58%] male; median age, 72.5 [range, 54-88] years). Median FEV1 and diffusing capacity of the lung for carbon monoxide at enrollment were 72.5% (range, 38%-136%) and 68% (range, 22%-96%) of predicted, respectively. Only 1 patient had a primary tumor recurrence. Involved lobe failure, the other component defining local failure, did not occur in any patient, so the estimated 4-year primary tumor control and local control rate were both 96% (95% CI, 83%-100%). As per protocol guidelines, the single patient with local recurrence underwent salvage lobectomy 1.2 years after SBRT, complicated by a grade 4 cardiac arrhythmia. The 4-year estimates of disease-free and overall survival were 57% (95% CI, 36%-74%) and 56% (95% CI, 35%-73%), respectively. Median overall survival was 55.2 months (95% CI, 37.7 months to not reached). Protocol-specified treatment-related grade 3, 4, and 5 adverse events were reported in 2 (8%; 95% CI, 0.1%-25%), 0, and 0 patients, respectively. Conclusions and Relevance: As given, SBRT appears to be associated with a high rate of primary tumor control, low treatment-related morbidity, and infrequent need for surgical salvage in patients with operable early-stage lung cancer. Trial Registration: ClinicalTrials.gov Identifier: NCT00551369.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/radiotherapy , Radiosurgery/methods , Radiotherapy Dosage , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Disease-Free Survival , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Recurrence, Local , Neoplasm Staging , Treatment Outcome
3.
Int J Radiat Oncol Biol Phys ; 100(4): 1057-1066, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29485047

ABSTRACT

A substantial barrier to the single- and multi-institutional aggregation of data to supporting clinical trials, practice quality improvement efforts, and development of big data analytics resource systems is the lack of standardized nomenclatures for expressing dosimetric data. To address this issue, the American Association of Physicists in Medicine (AAPM) Task Group 263 was charged with providing nomenclature guidelines and values in radiation oncology for use in clinical trials, data-pooling initiatives, population-based studies, and routine clinical care by standardizing: (1) structure names across image processing and treatment planning system platforms; (2) nomenclature for dosimetric data (eg, dose-volume histogram [DVH]-based metrics); (3) templates for clinical trial groups and users of an initial subset of software platforms to facilitate adoption of the standards; (4) formalism for nomenclature schema, which can accommodate the addition of other structures defined in the future. A multisociety, multidisciplinary, multinational group of 57 members representing stake holders ranging from large academic centers to community clinics and vendors was assembled, including physicists, physicians, dosimetrists, and vendors. The stakeholder groups represented in the membership included the AAPM, American Society for Radiation Oncology (ASTRO), NRG Oncology, European Society for Radiation Oncology (ESTRO), Radiation Therapy Oncology Group (RTOG), Children's Oncology Group (COG), Integrating Healthcare Enterprise in Radiation Oncology (IHE-RO), and Digital Imaging and Communications in Medicine working group (DICOM WG); A nomenclature system for target and organ at risk volumes and DVH nomenclature was developed and piloted to demonstrate viability across a range of clinics and within the framework of clinical trials. The final report was approved by AAPM in October 2017. The approval process included review by 8 AAPM committees, with additional review by ASTRO, European Society for Radiation Oncology (ESTRO), and American Association of Medical Dosimetrists (AAMD). This Executive Summary of the report highlights the key recommendations for clinical practice, research, and trials.


Subject(s)
Radiation Oncology/standards , Societies, Scientific/standards , Terminology as Topic , Advisory Committees/organization & administration , Advisory Committees/standards , Clinical Trials as Topic , Humans , Radiotherapy Dosage/standards , Radiotherapy Planning, Computer-Assisted/standards , Reference Standards , Software/standards , United States
4.
Int J Hyperthermia ; 30(1): 1-5, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24350642

ABSTRACT

Like other technically sophisticated medical endeavours, a hyperthermia clinic relies on skilled staffing. Physicians, physicists and technologists perform multiple tasks to ensure properly functioning equipment, appropriate patient selection, and to plan and administer this treatment. This paper reviews the competencies and tasks that are used in a hyperthermia clinic.


Subject(s)
Ambulatory Care Facilities , Hyperthermia, Induced , Humans , Hyperthermia, Induced/instrumentation , Medical Staff , Monitoring, Physiologic , Physicians , Thermometry/instrumentation , Workforce
5.
Int J Radiat Oncol Biol Phys ; 81(1): 305-12, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21236596

ABSTRACT

PURPOSE: To provide quantitative information on the image registration differences from multiple systems for image-guided radiotherapy (IGRT) credentialing and margin reduction in clinical trials. METHODS AND MATERIALS: Images and IGRT shift results from three different treatment systems (Tomotherapy Hi-Art, Elekta Synergy, Varian Trilogy) have been sent from various institutions to the Image-Guided Therapy QA Center (ITC) for evaluation for the Radiation Therapy Oncology Group (RTOG) trials. Nine patient datasets (five head-and-neck and four prostate) were included in the comparison, with each patient having 1-4 daily individual IGRT studies. In all cases, daily shifts were re-calculated by re-registration of the planning CT with the daily IGRT data using three independent software systems (MIMvista, FocalSim, VelocityAI). Automatic fusion was used in all calculations. The results were compared with those submitted from institutions. Similar regions of interest (ROIs) and same initial positions were used in registrations for inter-system comparison. Different slice spacings for CBCT sampling and different ROIs for registration were used in some cases to observe the variation of registration due to these factors. RESULTS: For the 54 comparisons with head-and-neck datasets, the absolute values of differences of the registration results between different systems were 2.6±2.1 mm (mean±SD; range 0.1-8.6 mm, left-right [LR]), 1.7±1.3 mm (0.0-4.9 mm, superior-inferior [SI]), and 1.8±1.1 mm (0.1-4.0 mm, anterior-posterior [AP]). For the 66 comparisons in prostate cases, the differences were 1.1±1.0 mm (0.0-4.6 mm, LR), 2.1±1.7 mm (0.0-6.6 mm, SI), and 2.0±1.8 mm (0.1-6.9 mm, AP). The differences caused by the slice spacing variation were relatively small, and the different ROI selections in FocalSim and MIMvista also had limited impact. CONCLUSION: The extent of differences was reported when different systems were used for image registration. Careful examination and quality assurance of the image registration process are crucial before considering margin reduction using IGRT in clinical trials.


Subject(s)
Clinical Trials as Topic/standards , Head and Neck Neoplasms/radiotherapy , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/standards , Radiotherapy, Computer-Assisted/standards , Algorithms , Head and Neck Neoplasms/diagnostic imaging , Humans , Male , Patient Positioning/standards , Prostatic Neoplasms/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Software , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/standards
6.
Int J Hyperthermia ; 26(7): 699-709, 2010.
Article in English | MEDLINE | ID: mdl-20849263

ABSTRACT

This paper reviews systems and techniques to deliver simultaneous thermoradiotherapy of breast cancer. It first covers the clinical implementation of simultaneous delivery of superficial (microwave or ultrasound) hyperthermia and external photon beam radiotherapy, first using a Cobalt-60 teletherapy unit and later medical linear accelerators. The parallel development and related studies of the Scanning Ultrasound Reflector Linear Arrays System (SURLAS), an advanced system specifically designed and developed for simultaneous thermoradiotherapy, follows. The performance characteristics of the SURLAS are reviewed and power limitation problems at high acoustic frequencies (>3 MHz) are discussed along with potential solutions. Next, the feasibility of simultaneous SURLAS hyperthermia and intensity modulated radiation therapy/image-guided radiotherapy (IMRT/IGRT) is established based on published and newly presented studies. Finally, based on the encouraging clinical results thus far, it is concluded that new trials employing the latest technologies are warranted along with further developments in treatment planning.


Subject(s)
Breast Neoplasms/therapy , Hyperthermia, Induced , Breast Neoplasms/radiotherapy , Combined Modality Therapy , Female , Humans , Pregnancy
7.
Int J Radiat Oncol Biol Phys ; 73(4): 1235-42, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19251095

ABSTRACT

PURPOSE: Using a retrospective analysis of treatment plans submitted from multiple institutions accruing patients to the Radiation Therapy Oncology Group (RTOG) 0236 non-small-cell stereotactic body radiotherapy protocol, the present study determined the dose prescription and critical structure constraints for future stereotactic body radiotherapy lung protocols that mandate density-corrected dose calculations. METHOD AND MATERIALS: A subset of 20 patients from four institutions participating in the RTOG 0236 protocol and using superposition/convolution algorithms were compared. The RTOG 0236 protocol required a prescription dose of 60 Gy delivered in three fractions to cover 95% of the planning target volume. Additional requirements were specified for target dose heterogeneity and the dose to normal tissue/structures. The protocol required each site to plan the patient's treatment using unit density, and another plan with the same monitor units and applying density corrections was also submitted. These plans were compared to determine the dose differences. Two-sided, paired Student's t tests were used to evaluate these differences. RESULTS: With heterogeneity corrections applied, the planning target volume receiving >/=60 Gy decreased, on average, 10.1% (standard error, 2.7%) from 95% (p = .001). The maximal dose to any point >/=2 cm away from the planning target volume increased from 35.2 Gy (standard error, 1.7) to 38.5 Gy (standard error, 2.2). CONCLUSION: Statistically significant dose differences were found with the heterogeneity corrections. The information provided in the present study is being used to design future heterogeneity-corrected RTOG stereotactic body radiotherapy lung protocols to match the true dose delivered for RTOG 0236.


Subject(s)
Carcinoma, Non-Small-Cell Lung/surgery , Dose Fractionation, Radiation , Lung Neoplasms/surgery , Radiosurgery , Algorithms , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/pathology , Maximum Tolerated Dose , Monte Carlo Method , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Conformal/methods , Retrospective Studies , Tumor Burden
8.
Int J Hyperthermia ; 24(5): 389-98, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18608589

ABSTRACT

Ultrasound is an attractive modality for non-invasive imaging to monitor temperature of tumorous regions undergoing hyperthermia therapy. Previously, we predicted monotonic changes in backscattered energy (CBE) of ultrasound with temperature for certain sub-wavelength scatterers. We also measured CBE values similar to our predictions in bovine liver, turkey breast muscle, and pork rib muscle in both 1D and 2D in in vitro studies. To corroborate those results in perfused, living tissue, we measured CBE in both normal tissue and in implanted human tumors (HT29 colon cancer line) in 7 nude mice. Images were formed by a phased-array imager with a 7.5 MHz linear probe during homogeneous heating from 37 degrees to 45 degrees C in 0.5 degrees C steps and from body temperature to 43 degrees C during heterogeneous heating. We used cross-correlation as a similarity measure in RF signals to automatically track feature displacement as a function of temperature. Feature displacement was non-uniform with a maximum value of 1 mm across all specimens during homogeneous heating, and 0.2 mm during heterogeneous heating. Envelopes of image regions, compensated for non-rigid motion, were found with the Hilbert transform then smoothed with a 3 x 3 running average filter before forming the backscattered energy at each pixel. Means of both the positive and negative changes in the BE images were evaluated. CBE was monotonic and accumulated to 4-5 dB during homogeneous heating to 45 degrees C and 3-4 dB during heterogenous heating to 43 degrees C. These results are consistent with our previous in vitro measurements and support the use of CBE for temperature estimation in vivo during hyperthermia.


Subject(s)
Hyperthermia, Induced/methods , Scattering, Radiation , Ultrasonography , Animals , Body Temperature/physiology , Cell Line, Tumor , Colonic Neoplasms , Image Interpretation, Computer-Assisted/methods , Mice , Mice, Nude , Models, Theoretical , Movement , Neoplasm Transplantation
9.
Ultrasound Med Biol ; 34(2): 289-98, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17935869

ABSTRACT

Ultrasound backscattered from tissue has previously been shown theoretically and experimentally to change predictably with temperature in the hyperthermia range, i.e., 37 degrees C to 45 degrees C, motivating use of the change in backscattered ultrasonic energy (CBE) for ultrasonic thermometry. Our earlier theoretical model predicts that CBE from an individual scatterer will be monotonic with temperature, with, e.g., positive change for lipid-based scatterers and negative for aqueous-based scatterers. Experimental results have previously confirmed the presence of these positive and negative changes in one-dimensional ultrasonic signals and in two-dimensional images acquired from in vitro bovine, porcine and turkey tissues. In order to investigate CBE for populations of scatterers, we have developed an ultrasonic image simulation model, including temperature dependence for individual scatterers based on predictions from our theoretical model. CBE computed from images simulated for populations of randomly distributed scatterers behaves similarly to experimental results, with monotonic variation for individual pixel measurements and for image regions. Effects on CBE of scatterer type and distribution, size of the image region and signal-to-noise ratio have been examined. This model also provides the basis for future work regarding significant issues relevant to temperature imaging based on ultrasonic CBE such as effects of motion on CBE, limitations of motion-compensation techniques and accuracy of temperature estimation, including tradeoffs between temperature accuracy and available spatial resolution.


Subject(s)
Computer Simulation , Thermometers , Ultrasonics , Animals , Body Temperature , Fever/diagnostic imaging , Phantoms, Imaging , Scattering, Radiation , Ultrasonography
10.
Article in English | MEDLINE | ID: mdl-16779932

ABSTRACT

In this study, two effective, non-toxic, wind erosion palliative materials were analyzed for their efficacy in preventing the spread of bacterial spores. Desert sand was employed in a laboratory setting with a non-toxic simulant bacterium in an attempt to accurately represent the spreadability of the hantavirus. Spore simulants were used instead of viruses due to availability, decreased susceptibility to desiccation and detection ability without involving tissue cultures. The simulant was used to contaminate sand in a controlled environment, and an artificial turbulence was introduced using compressed air to generate airflow that could be expected in a desert environment. The airborne spores were identified both qualitatively and quantitatively through microscopy, Gram staining, plating, and incubation to monitor effectiveness. A water-based polysaccharide product, Surtac, was found to be most effective for the immobilization of bacteria on sand and greatly reduced the amount of contaminant that becomes airborne. The results suggest that the two wind erosion products used in this study may be successfully employed to reduce the ability of bacterial spores to spread in arid regions.


Subject(s)
Bacillus anthracis/physiology , Bacterial Adhesion/physiology , Desert Climate , Air Microbiology/standards , Air Movements , Air Pollution/prevention & control , Bacteriological Techniques , Colony Count, Microbial , Environmental Monitoring , Polysaccharides/chemistry , Silicon Dioxide , Spores, Bacterial/physiology , Water/chemistry
11.
Med Phys ; 32(11): 3246-56, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16372408

ABSTRACT

A detailed description of a clinical grade Scanning Ultrasound Reflector Linear Array System (SURLAS) applicator was given in a previous paper [Med. Phys. 32, 230-240 (2005)]. In this paper we concentrate on the design, development, and testing of the personal computer (PC) based treatment delivery software that runs the therapy system. The SURLAS requires the coordinated interaction between the therapy applicator and several peripheral devices for its proper and safe operation. One of the most important tasks was the coordination of the input power sequences for the elements of two parallel opposed ultrasound arrays (eight 1.5 cm x 2 cm elements/array, array 1 and 2 operate at 1.9 and 4.9 MHz, respectively) in coordination with the position of a dual-face scanning acoustic reflector. To achieve this, the treatment delivery software can divide the applicator's treatment window in up to 64 sectors (minimum size of 2 cm x 2 cm), and control the power to each sector independently by adjusting the power output levels from the channels of a 16-channel radio-frequency generator. The software coordinates the generator outputs with the position of the reflector as it scans back and forth between the arrays. Individual sector control and dual frequency operation allows the SURLAS to adjust power deposition in three dimensions to superficial targets coupled to its treatment window. The treatment delivery software also monitors and logs several parameters such as temperatures acquired using a 16-channel thermocouple thermometry unit. Safety (in particular to patients) was the paramount concern and design criterion. Failure mode and effects analysis (FMEA) was applied to the applicator as well as to the entire therapy system in order to identify safety issues and rank their relative importance. This analysis led to the implementation of several safety mechanisms and a software structure where each device communicates with the controlling PC independently of the others. In case of a malfunction in any part of the system or a violation of a user-defined safety criterion based on temperature readings, the software terminates treatment immediately and the user is notified. The software development process consisting of problem analysis, design, implementation, and testing is presented in this paper. Once the software was finished and integrated with the hardware, the therapy system was extensively tested. Results demonstrated that the software operates the SURLAS as intended with minimum risk to future patients.


Subject(s)
Radiography/methods , Radiotherapy Planning, Computer-Assisted/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Ultrasonic Therapy/methods , Ultrasonography/methods , Algorithms , Calibration , Combined Modality Therapy , Computers , Equipment Design , Humans , Microcomputers , Quality Control , Software , Software Design , Temperature , Ultrasonics , User-Computer Interface
12.
Article in English | MEDLINE | ID: mdl-16382617

ABSTRACT

Noninvasive temperature imaging would enhance the ability to uniformly heat tumors at therapeutic levels. Ultrasound is an attractive modality for this purpose. Previously, we predicted monotonic changes in backscattered energy (CBE) of ultrasound with temperature for certain subwavelength scatterers. We also measured CBE values similar to our predictions in bovine liver, turkey breast, and pork muscle in one dimension (1-D). Those measurements were corrected manually for changes in the axial position of echo signals with temperature. To investigate the effect of temperature on CBE in 2-D, we imaged 1-cm thick samples of bovine liver, turkey breast, and pork muscle during heating in a water bath. Images were formed by a phased-array imager with a 7 MHz linear probe. Using radio frequency (RF) signals permitted the use of cross correlation as a similarity measure for automatic tracking of feature displacement as a function of temperature. Feature displacement across the specimen was nonuniform with typical total displacements of 0.5 mm in both axial and lateral directions. Apparent movement in eight image regions in each specimen was tracked from 37 to 50 degrees C in 0.5 degrees C steps. Envelopes of motion-compensated image regions were found then smoothed with a 3 x 3 running average filter before forming the backscattered energy at each pixel. Our measure of CBE compared means of both the positive and negative changes in the backscattered energy (BE) images. CBE was monotonic and differed by about 4 dB at 50 degrees C from its value at 37 degrees C. Relatively noise-free CBE curves from tissue volumes of less than 1 cm3 supports the use of CBE for temperature estimation.


Subject(s)
Algorithms , Image Interpretation, Computer-Assisted/methods , Movement , Thermography/methods , Ultrasonography/methods , Animals , Breast/physiopathology , Cattle , In Vitro Techniques , Liver/diagnostic imaging , Liver/physiology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity , Swine , Turkeys , Ultrasonography, Mammary/methods
13.
Med Phys ; 32(1): 230-40, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15719974

ABSTRACT

A new ultrasound applicator with three-dimensional power distribution control was developed for simultaneous thermoradiotherapy. The system was named SURLAS for Scanning Ultrasound Reflector Linear Arrays System. In this paper, the hardware of the first clinical grade SURLAS applicator is described with emphasis on clinically important static acoustic characteristics and on construction aspects not reported before. Functionally, the SURLAS applicator consists of two parallel opposed ultrasound linear arrays aiming their acoustic beams to a V-shape scanning ultrasound reflector, which deflects the beams coming from opposite directions toward the treatment area. The reciprocating motion of the reflector in-between the arrays spreads the ultrasonic energy over the target area scanned. Control of power deposition over the 16 cm by 16 cm treatment window area is achieved by adjusting the power input into the transducer elements of the arrays as a function of the position of the scanning reflector. Furthermore, the arrays operate at significantly different frequencies (1.9 and 4.9 MHz) so that intensity modulation of beams of different frequencies can be exploited to adjust the depth of energy penetration. With this design, external electron or photon beams can be concurrently delivered with hyperthermia by irradiating through the applicator's body. Safety features were implemented into the applicator's design to monitor its performance during operation. A detailed description of the applicator including impedance matching circuits/filters, radiation force balance power measurements, hydrophone pressure field distribution measurements, as well as safety test results are reported.


Subject(s)
Hyperthermia, Induced/methods , Neoplasms/therapy , Radiotherapy/methods , Ultrasonic Therapy/methods , Acoustics , Algorithms , Combined Modality Therapy/methods , Electrons , Fever , Humans , Photons , Pressure , Software , Time Factors , Ultrasonics
14.
Phys Med Biol ; 49(6): 869-86, 2004 Mar 21.
Article in English | MEDLINE | ID: mdl-15104313

ABSTRACT

The presence of bone in the ultrasound beam path raises concerns, both in diagnostic and therapeutic applications, because significant temperature elevations may be induced at nearby soft tissue-bone interfaces due the facts that ultrasound is (i) highly absorbed in bone and (ii) reflected at soft tissue-bone interfaces in various degrees depending on angle of incidence. Consequently, in ultrasonic thermal therapy, the presence of bone in the ultrasound beam path is considered a major disadvantage and it is usually avoided. However, based on clinical experience and previous theoretical studies, we hypothesized that the presence of bone in superficial unfocused ultrasound hyperthermia can actually be exploited to induce more uniform and enhanced (with respect to the no-bone situation) temperature distributions in superficial target volumes. In particular, we hypothesize that the presence of underlying bone in superficial target volume enhances temperature elevation not only by additional direct power deposition from acoustic reflection, but also from thermal diffusion from the underlying bone. Here we report laboratory results that corroborate previous computational studies and strengthen the above-stated hypothesis. Three different temperature measurement techniques, namely, thermometric (using fibre-optic temperature probes), thermographic (using an infrared camera) and magnetic resonance imaging (using proton resonance frequency shifts), were used in high-power short-exposure, and in low-power extended-exposure, experiments using a 19 mm diameter planar transducer operating at 1.0 and 3.3 MHz (frequencies of clinical relevance). The measurements were performed on three technique-specific phantoms (with and without bone inclusions) and experimental set-ups that resembled possible superficial ultrasound hyperthermia clinical situations. Results from all three techniques were in general agreement and clearly showed that significantly higher heating rates (greater than fourfold) were induced in soft tissue-like phantom materials adjacent (within approximately 5 mm) to a bovine bone as compared to similar experiments without bone inclusions. For low-power long-exposure experiments, where thermal conduction effects are significant, the thermal impact of bone reached at distances > 10 mm from the bone surface (upstream of the bone). Therefore, we hypothesize that underlying bone exposed to planar ultrasound hyperthermia creates a high-temperature thermal boundary at depth that compensates for beam attenuation, thus producing more uniform temperature distribution in the intervening tissue layers. With appropriate technology, this finding may lead to improved thermal doses in superficial treatment sites such as the chest wall and the head/neck.


Subject(s)
Body Temperature/physiology , Body Temperature/radiation effects , Connective Tissue/diagnostic imaging , Connective Tissue/physiology , Ribs/physiology , Ultrasonic Therapy/methods , Animals , Energy Transfer/physiology , Hot Temperature , Hyperthermia, Induced/adverse effects , Hyperthermia, Induced/methods , Phantoms, Imaging , Radiation Dosage , Relative Biological Effectiveness , Ribs/radiation effects , Temperature , Thermography/methods , Ultrasonic Therapy/adverse effects , Ultrasonography
15.
Radiat Res ; 161(2): 193-200, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14731070

ABSTRACT

To determine whether exposure to radiofrequency (RF) radiation can induce DNA damage or apoptosis, Molt-4 T lymphoblastoid cells were exposed with RF fields at frequencies and modulations of the type used by wireless communication devices. Four types of frequency/modulation forms were studied: 847.74 MHz code-division multiple-access (CDMA), 835.62 MHz frequency-division multiple-access (FDMA), 813.56 MHz iDEN(R) (iDEN), and 836.55 MHz time-division multiple-access (TDMA). Exponentially growing cells were exposed to RF radiation for periods up to 24 h using a radial transmission line (RTL) exposure system. The specific absorption rates used were 3.2 W/kg for CDMA and FDMA, 2.4 or 24 mW/kg for iDEN, and 2.6 or 26 mW/kg for TDMA. The temperature in the RTLs was maintained at 37 degrees C +/- 0.3 degrees C. DNA damage was measured using the single-cell gel electrophoresis assay. The annexin V affinity assay was used to detect apoptosis. No statistically significant difference in the level of DNA damage or apoptosis was observed between sham-treated cells and cells exposed to RF radiation for any frequency, modulation or exposure time. Our results show that exposure of Molt-4 cells to CDMA, FDMA, iDEN or TDMA modulated RF radiation does not induce alterations in level of DNA damage or induce apoptosis.


Subject(s)
Apoptosis/radiation effects , Cell Phone , DNA Damage , DNA/radiation effects , Leukemia, Lymphoid/pathology , Microwaves , Cell Line, Tumor/pathology , Cell Line, Tumor/radiation effects , Cell Transformation, Neoplastic/radiation effects , Comet Assay , Dose-Response Relationship, Radiation , Environmental Exposure , Humans , Radio Waves
16.
Med Phys ; 30(6): 1021-9, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12852524

ABSTRACT

Hyperthermia has been used as a cancer treatment in which tumors are elevated to cytotoxic temperatures to aid in their control. A noninvasive method for volumetrically determining temperature distribution during treatment would greatly enhance the ability to uniformly heat tumors at therapeutic levels. Ultrasound is an attractive modality for this purpose. We investigated changes in backscattered energy (CBE) from pulsed ultrasound with temperature. Our predicted changes in backscattered energy were matched by in vitro measurements in samples of bovine liver, turkey breast, and pork rib muscle. We studied CBE in tissue regions with multiple scatterers, of isolated individual scatterers, and in collections of individual scatterers. The latter appears to have the most potential. We measured the CBE with a focused circular transducer with a center frequency of 7.5 MHz. The standard deviation of the CBE of 75-125 scattering regions from 0.3 to 0.5 cm3 volumes increased nearly monotonically from 37 degrees C to 50 degrees C in each tissue type. Although the slopes were different, the curve for each type of tissue was well matched by a second-degree polynomial, with a correlation coefficient of 0.99 in each case. Thus the use of the CBE of ultrasound for temperature estimation may have clinical promise with a convenient, low cost modality. Because our approach exploits the inhomogeneities present in tissue, we believe that if it is successful in vitro, it holds promise for in vivo application.


Subject(s)
Body Temperature/physiology , Body Temperature/radiation effects , Hyperthermia, Induced/methods , Models, Biological , Therapy, Computer-Assisted/methods , Thermography/methods , Ultrasonography/methods , Animals , Cattle , Computer Simulation , Energy Transfer , Feasibility Studies , Hot Temperature , Humans , Liver/physiology , Liver/radiation effects , Muscle, Skeletal/physiology , Muscle, Skeletal/radiation effects , Neoplasms/diagnosis , Neoplasms/diagnostic imaging , Neoplasms/therapy , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity , Swine , Turkeys
17.
Radiat Res ; 160(2): 143-51, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12859224

ABSTRACT

This study was designed to determine whether chronic exposure to radiofrequency (RF) radiation from cellular phones increased the incidence of spontaneous tumors in F344 rats. Eighty male and 80 female rats were randomly placed in each of three irradiation groups. The sham group received no irradiation; the Frequency Division Multiple Access (FDMA) group was exposed to 835.62 MHz FDMA RF radiation; and the Code Division Multiple Access (CDMA) group was exposed to 847.74 MHz CDMA RF radiation. Rats were irradiated 4 h per day, 5 days per week over 2 years. The nominal time-averaged specific absorption rate (SAR) in the brain for the irradiated animals was 0.85 +/- 0.34 W/kg (mean +/- SD) per time-averaged watt of antenna power. Antennas were driven with a time-averaged power of 1.50 +/- 0.25 W (range). That is, the nominal time-averaged brain SAR was 1.3 +/- 0.5 W/kg (mean +/- SD). This number was an average from several measurement locations inside the brain, and it takes into account changes in animal weight and head position during irradiation. All major organs were evaluated grossly and histologically. The number of tumors, tumor types and incidence of hyperplasia for each organ were recorded. There were no significant differences among final body weights or survival days for either males or females in any group. No significant differences were found between treated and sham-exposed animals for any tumor in any organ. We conclude that chronic exposure to 835.62 MHz FDMA or 847.74 MHz CDMA RF radiation had no significant effect on the incidence of spontaneous tumors in F344 rats.


Subject(s)
Neoplasms, Radiation-Induced/etiology , Neoplasms, Radiation-Induced/pathology , Radio Waves/adverse effects , Animals , Cell Phone , Central Nervous System Neoplasms/etiology , Central Nervous System Neoplasms/pathology , Dose-Response Relationship, Radiation , Female , Hyperplasia/etiology , Hyperplasia/pathology , Male , Organ Specificity , Radiation Dosage , Radio Waves/classification , Rats , Rats, Inbred F344 , Reproducibility of Results , Sensitivity and Specificity
18.
Radiat Res ; 157(5): 506-15, 2002 May.
Article in English | MEDLINE | ID: mdl-11966316

ABSTRACT

To determine if radiofrequency (RF) radiation induces the formation of micronuclei, C3H 10T(1/2) cells were exposed to 835.62 MHz frequency division multiple access (FDMA) or 847.74 MHz code division multiple access (CDMA) modulated RF radiation. After the exposure to RF radiation, the micronucleus assay was performed by the cytokinesis block method using cytochalasin B treatment. The micronuclei appearing after mitosis were scored in binucleated cells using acridine orange staining. The frequency of micronuclei was scored both as the percentage of binucleated cells with micronuclei and as the number of micronuclei per 100 binucleated cells. Treatment of cells with cytochalasin B at a concentration of 2 microg/ml for 22 h was found to yield the maximum number of binucleated cells in C3H 10T(1/2) cells. The method used for the micronucleus assay in the present study detected a highly significant dose response for both indices of micronucleus production in the dose range of 0.1-1.2 Gy and it was sensitive enough to detect a significant (P > 0.05) increase in micronuclei after doses of 0.3 Gy in exponentially growing cells and after 0.9 Gy in plateau-phase cells. Exponentially growing cells or plateau-phase cells were exposed to CDMA (3.2 or 4.8 W/kg) or FDMA (3.2 or 5.1 W/kg) RF radiation for 3, 8, 16 or 24 h. In three repeat experiments, no exposure condition was found by analysis of variance to result in a significant increase relative to sham-exposed cells either in the percentage of binucleated cells with micronuclei or in the number of micronuclei per 100 binucleated cells. In this study, data from cells exposed to different RF signals at two SARs were compared to a common sham-exposed sample. We used the Dunnett's test, which is specifically designed for this purpose, and found no significant exposure-related differences for either plateau-phase cells or exponentially growing cells. Thus the results of this study are not consistent with the possibility that these RF radiations induce micronuclei.


Subject(s)
Micronuclei, Chromosome-Defective/radiation effects , Radio Waves , Animals , Cell Line , Cytochalasin B/metabolism , Cytochalasin B/radiation effects , Dose-Response Relationship, Radiation , Fibroblasts/radiation effects , Gamma Rays , Mice , Mice, Inbred C3H , Micronucleus Tests
19.
FEMS Microbiol Ecol ; 33(1): 27-34, 2000 Jul 01.
Article in English | MEDLINE | ID: mdl-10922500

ABSTRACT

A 745-bp luxA fragment was amplified from Vibrio harveyi (UM 1503), radiolabeled, and used as a probe to detect and quantify luxA genotypes in culturable bacterial populations from the Chesapeake Bay. DNA samples from 53 reference strains were also examined for this gene. The luxA-positive bacteria comprised from 0-6% of the culturable heterotrophic bacterial community in samples from the Bay. Only those reference strains known to be luminescent contained the luxA gene, as indicated by PCR. Results in all cases were confirmed by PCR of DNA extracts and Southern hybridization analyses, using an internal probe for confirmation of luxA amplification products. Sequence analysis of luxA genes from three nonluminescent bacteria isolated from the Chesapeake Bay indicated little or no differences when compared with luxA sequences from known marine luminescent bacterial species. These three Chesapeake Bay strains and other luxA-positive strains were tested with a luminometer and confirmed to be nonluminescent. All of over 7800 bacterial colonies enumerated during this study from Chesapeake Bay samples were non-visibly luminescent. Our results indicate that luxA-positive bacteria isolated from the Chesapeake Bay are not generally luminescent on phenotypic examination, implying that gene probe techniques are required for examining luxA gene distribution in microbial populations present in environmental samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...