Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 19705, 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37952034

ABSTRACT

This work presents a hydrothermal-based facile method for synthesizing ZnFe2O4, whose size can be controlled with the concentration of sodium acetate used as a fuel and its physical changes at nanoscales when exposed to two different gases. The structural, morphological, compositional, and electronic properties of the synthesized samples are also presented in this paper. The crystal structure of the synthesized samples was determined using an X-ray Diffractometer (XRD). The results revealed fluctuations in the size, lattice parameter, and strain in the nanoparticles with increasing the concentration of sodium acetate. Field-Emission Scanning Electron Microscopy (FESEM) was used to determine synthesized materials' morphology and particle size. It revealed that the particles possessed approximately spherical morphology whose size decreased significantly with the increasing amount of sodium acetate. Transmission Electron Microscopy (TEM) was utilized to determine the structure, morphology, and elemental distributions in particles at the nanoscale, and it confirmed the findings of XRD and FESEM analyses. The high-resolution TEM (HRTEM) imaging analysis of the nanoparticles in our studied samples revealed that the particles predominantly possessed (001) type facets. X-ray photoelectron spectroscopy (XPS) and core-loss electron energy loss spectroscopy (EELS) showed an increasing fraction of Fe2+ with the decreasing size of the particles in samples. The Brunauer, Emmett, and Tellers (BET) analysis of samples revealed a higher surface area as the particle size decreases. In addition, the determined surface area and pore size values are compared with the literature, and it was found that the synthesized materials are promising for gas-sensing applications. The ab initio calculations of the Density of States (DOS) and Band structure of (001) surface terminating ZnFe2O4 were carried out using Quantum Espresso software to determine the bandgap of the synthesized samples. They were compared to their corresponding experimentally determined bandgap values and showed close agreement. Finally, in-situ TEM measurement was carried out on one of the four studied samples with robust properties using Ar and CO2 as reference and target gases, respectively. It is concluded from the presented study that the size reduction of the ZnFe2O4 nanoparticles (NPs) tunes the bandgap and provides more active sites due to a higher concentration of oxygen vacancies. The in-situ TEM showed us a nanoscale observation of the change in one of the crystal structure parameters. The d spacing of ZnFe2O4 NPs showed a noticeable fluctuation, reaching more than 5% upon exposure to CO2 and Ar gases.

2.
ACS Nano ; 17(19): 18979-18999, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37702397

ABSTRACT

Photodynamic therapy (PDT) and photothermal therapy (PTT) have gained considerable attention as potential alternatives to conventional cancer treatments. However, these approaches remain limited by low solubility, poor stability, and inefficient targeting of many common photosensitizers (PSs) and photothermal agents (PTAs). To overcome the aforementioned limitations, we engineered biocompatible and biodegradable tumor-targeted upconversion nanospheres with imaging capabilities. The multifunctional nanospheres consist of a sodium yttrium fluoride core doped with lanthanides (ytterbium, erbium, and gadolinium) and the PTA bismuth selenide (NaYF4:Yb/Er/Gd,Bi2Se3) enveloped in a mesoporous silica shell that encapsulates a PS, chlorin e6 (Ce6), within its pores. NaYF4:Yb/Er converts deeply penetrating near-infrared (NIR) light to visible light, which excites Ce6 to generate cytotoxic reactive oxygen species (ROS), while Bi2Se3 efficiently converts absorbed NIR light to heat. Additionally, Gd enables magnetic resonance imaging of the nanospheres. The mesoporous silica shell is coated with DPPC/cholesterol/DSPE-PEG to retain the encapsulated Ce6 and prevent serum protein adsorption and macrophage recognition that hinder tumor targeting. Finally, the coat is conjugated to the acidity-triggered rational membrane (ATRAM) peptide, which promotes specific and efficient internalization into malignant cells in the mildly acidic microenvironment of tumors. The nanospheres facilitated tumor magnetic resonance and thermal and fluorescence imaging and exhibited potent NIR laser light-induced anticancer effects in vitro and in vivo via combined ROS production and localized hyperthermia, with negligible toxicity to healthy tissue, hence markedly extending survival. Our results demonstrate that the ATRAM-functionalized, lipid/PEG-coated upconversion mesoporous silica nanospheres (ALUMSNs) offer multimodal diagnostic imaging and targeted combinatorial cancer therapy.

3.
Microsc Microanal ; 29(2): 596-605, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37749724

ABSTRACT

A novel focused ion beam (FIB)-based methodology for the preparation of clean and artifact-free specimens on micro-electro-mechanical-system (MEMS)-based chips for in-situ electrical and electro-thermal experiments in a (scanning) transmission electron microscope ((S)TEM) is introduced. Owing to an alternative geometry, the lamellae are attached to a MEMS-based chip directly after the lift-out procedure and afterward further treated or thinned to electron transparency. The quality of produced lamellae on a chip resembles the quality of a classical FIB-prepared sample that is here demonstrated by high-resolution STEM imaging and analytical techniques. Various sample preparation parameters and the performance of in-situ prepared samples have been evaluated through electrical-biasing experiments.

4.
Microsc Microanal ; 23(4): 751-757, 2017 08.
Article in English | MEDLINE | ID: mdl-28784198

ABSTRACT

In this study we compare two thermal annealing series of III/V semiconductor heterostructures on Si, where during the first series nitrogen is present in the in situ holder. The second, comparative, measurement is done in a tertiarybutylphosphine (TBP) environment. The sample annealed in a TBP environment shows favorable thermal stability up to 500°C compared to the unstabilized sample, which begins to degrade at less than 300°C. Evaporation of P from the material is tracked qualitatively by measuring the thickness of the sample during thermal annealing with and without stabilization. Finally, we investigate the in situ thermal annealing processes at atomic resolution. Here it is possible to study phase separation as well as the diffusion of As from a Ga(NAsP) quantum well in the surrounding GaP material during thermal annealing. To make these investigations possible we developed an extension for our in situ transmission electron microscopy setup for the safe usage of toxic and pyrophoric III/V semiconductor precursors. A commercially available gas cell and gas supply system were expanded with a gas mixing system, an appropriate toxic gas monitoring system and a gas scrubbing system. These components allow in situ studies of semiconductor growth and annealing under the purity conditions required for these materials.

5.
Microsc Microanal ; 22(3): 515-9, 2016 06.
Article in English | MEDLINE | ID: mdl-27026281

ABSTRACT

A reproducible way to transfer a single crystalline sample into a gas environmental cell holder for in situ transmission electron microscopic (TEM) analysis is shown in this study. As in situ holders have only single-tilt capability, it is necessary to prepare the sample precisely along a specific zone axis. This can be achieved by a very accurate focused ion beam lift-out preparation. We show a step-by-step procedure to prepare the sample and transfer it into the gas environmental cell. The sample material is a GaP/Ga(NAsP)/GaP multi-quantum well structure on Si. Scanning TEM observations prove that it is possible to achieve atomic resolution at very high temperatures in a nitrogen environment of 100,000 Pa.

SELECTION OF CITATIONS
SEARCH DETAIL
...