Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 6(3): 796-801, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16573140

ABSTRACT

A simple and versatile approach to constructing patterns on a solid surface using nanoscale objects is demonstrated. The approach is essentially an inlaying process, in which recess patterns fabricated on a surface are selectively filled with nanoscale objects. The objects are anchored firmly on the surface due to the spatial confinement provided by the recess structures. Protein molecules and inorganic nanoparticles are used in this demonstration. Cyclic voltammetry is used to detect electron transfer signals from patterns of protein molecules. The approach suggests a potentially fast, high-throughput and versatile technique for constructing architectural structures on a solid surface using nanoscale objects.


Subject(s)
Electrochemistry/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Materials Testing , Surface Properties
2.
Langmuir ; 20(20): 8768-72, 2004 Sep 28.
Article in English | MEDLINE | ID: mdl-15379504

ABSTRACT

The redox reaction of cytochrome c immobilized on the bare surfaces of microelectrodes and macroscopic electrodes (macroelectrodes) composed of different planes of highly oriented pyrolytic graphite has been investigated using cyclic voltammetry. The protein-immobilized microelectrodes were fabricated using a simple masking method. For both macroelectrodes and microelectrodes, the redox reaction of immobilized cytochrome c needs to be activated by increasing the electrochemical potential maximum of cyclic voltammetry to a high positive value. The redox currents of this protein-electrode system can be enhanced using two approaches. The oxidation and reduction currents of cytochrome c adsorbed on microelectrodes that are composed of the edge plane show an anomalous enhancement compared to those for macroelectrodes composed of the basal plane. The difference in the surface chemical properties of the two kinds of electrodes results in the current anomaly. The oxidation current of the macroelectrode can be selectively enhanced by decreasing the potential minimum.


Subject(s)
Cytochromes c/chemistry , Enzymes, Immobilized/chemistry , Microchemistry , Electrodes , Electrons , Microelectrodes , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...