Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol ; 129(5): 695-713, 2015 May.
Article in English | MEDLINE | ID: mdl-25778619

ABSTRACT

Extracellular α-Synuclein has been implicated in interneuronal propagation of disease pathology in Parkinson's Disease. How α-Synuclein is released into the extracellular space is still unclear. Here, we show that α-Synuclein is present in extracellular vesicles in the central nervous system. We find that sorting of α-Synuclein in extracellular vesicles is regulated by sumoylation and that sumoylation acts as a sorting factor for targeting of both, cytosolic and transmembrane proteins, to extracellular vesicles. We provide evidence that the SUMO-dependent sorting utilizes the endosomal sorting complex required for transport (ESCRT) by interaction with phosphoinositols. Ubiquitination of cargo proteins is so far the only known determinant for ESCRT-dependent sorting into the extracellular vesicle pathway. Our study reveals a function of SUMO protein modification as a Ubiquitin-independent ESCRT sorting signal, regulating the extracellular vesicle release of α-Synuclein. We deciphered in detail the molecular mechanism which directs α-Synuclein into extracellular vesicles which is of highest relevance for the understanding of Parkinson's disease pathogenesis and progression at the molecular level. We furthermore propose that sumo-dependent sorting constitutes a mechanism with more general implications for cell biology.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Extracellular Vesicles/metabolism , Oligodendroglia/cytology , SUMO-1 Protein/metabolism , Sumoylation/physiology , alpha-Synuclein/metabolism , Animals , Cell Culture Techniques , Cell Line, Tumor , Endosomal Sorting Complexes Required for Transport/genetics , Extracellular Vesicles/genetics , Mice , Oligodendroglia/metabolism , SUMO-1 Protein/genetics , Signal Transduction/genetics , Signal Transduction/physiology , alpha-Synuclein/genetics
2.
J Biol Chem ; 285(34): 26279-88, 2010 Aug 20.
Article in English | MEDLINE | ID: mdl-20554533

ABSTRACT

Niemann-Pick type C1 disease is an autosomal-recessive lysosomal storage disorder. Loss of function of the npc1 gene leads to abnormal accumulation of free cholesterol and sphingolipids within the late endosomal and lysosomal compartments resulting in progressive neurodegeneration and dysmyelination. Here, we show that oligodendroglial cells secrete cholesterol by exosomes when challenged with cholesterol or U18666A, which induces late endosomal cholesterol accumulation. Up-regulation of exosomal cholesterol release was also observed after siRNA-mediated knockdown of NPC1 and in fibroblasts derived from NPC1 patients and could be reversed by expression of wild-type NPC1. We provide evidence that exosomal cholesterol secretion depends on the presence of flotillin. Our findings indicate that exosomal release of cholesterol may serve as a cellular mechanism to partially bypass the traffic block that results in the toxic lysosomal cholesterol accumulation in Niemann-Pick type C1 disease. Furthermore, we suggest that secretion of cholesterol by exosomes contributes to maintain cellular cholesterol homeostasis.


Subject(s)
Cholesterol/metabolism , Exosomes/metabolism , Lysosomes/metabolism , Niemann-Pick Diseases/metabolism , Androstenes/pharmacology , Biological Transport , Carrier Proteins/analysis , Carrier Proteins/genetics , Cells, Cultured , Cholesterol/pharmacology , Fibroblasts/chemistry , Fibroblasts/metabolism , Homeostasis , Humans , Intracellular Signaling Peptides and Proteins , Membrane Glycoproteins/analysis , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Membrane Proteins , Niemann-Pick C1 Protein , Oligodendroglia/cytology , Oligodendroglia/drug effects , Oligodendroglia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...