Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 28(2): 471-483, 2019 01.
Article in English | MEDLINE | ID: mdl-29485216

ABSTRACT

Determining the host-parasitoid interactions and parasitism rates for invasive species entering novel environments is an important first step in assessing potential routes for biocontrol and integrated pest management. Conventional insect rearing techniques followed by taxonomic identification are widely used to obtain such data, but this can be time-consuming and prone to biases. Here, we present a next-generation sequencing approach for use in ecological studies which allows for individual-level metadata tracking of large numbers of invertebrate samples through the use of hierarchically organised molecular identification tags. We demonstrate its utility using a sample data set examining both species identity and levels of parasitism in late larval stages of the oak processionary moth (Thaumetopoea processionea-Linn. 1758), an invasive species recently established in the United Kingdom. Overall, we find that there are two main species exploiting the late larval stages of oak processionary moth in the United Kingdom with the main parasitoid (Carcelia iliaca-Ratzeburg, 1840) parasitising 45.7% of caterpillars, while a rare secondary parasitoid (Compsilura concinnata-Meigen, 1824) was also detected in 0.4% of caterpillars. Using this approach on all life stages of the oak processionary moth may demonstrate additional parasitoid diversity. We discuss the wider potential of nested tagging DNA metabarcoding for constructing large, highly resolved species interaction networks.


Subject(s)
DNA Barcoding, Taxonomic , Host-Parasite Interactions/genetics , Introduced Species , Lepidoptera/parasitology , Animals , Ecosystem , Larva/genetics , Larva/parasitology , Lepidoptera/genetics , Moths/genetics , United Kingdom , Wasps/genetics , Wasps/parasitology
2.
Environ Entomol ; 40(1): 120-5, 2011 Feb.
Article in English | MEDLINE | ID: mdl-22182620

ABSTRACT

A series of field trials were used to assess the practicality of using sticky traps to monitor populations of green spruce aphid, Elatobium abietinum (Walker), in plantations of Sitka spruce. The highest numbers of alate E. abietinum were caught on sticky traps placed in the upper third of the live canopy at 9-17 m above the ground, whereas low numbers of aphids were caught just below the live canopy or at 2 m above the ground. Trials in 2005 with sticky traps of different colors showed that significantly more alate E. abietinum were caught on yellow, red, and green sticky traps than on white, blue, and black traps. A repeat trial in 2007 resulted in significantly more alate aphids being caught on red sticky traps than on traps of any other color except for green. Attraction to red is unusual among aphids, as aphids are thought not to possess a red-sensitive photoreceptor. The attraction of E. abietinum to red-colored sticky traps suggests that conifer-feeding aphids might have a fundamentally different color response compared with aphids that live on cereals, grasses, or herbaceous plants. Alternatively, the attraction to red might be a physiological artifact related to the presence of red-screening pigments in the aphid's compound eye.


Subject(s)
Aphids/physiology , Insect Control/methods , Altitude , Animals , Color , Insect Control/instrumentation , Picea , Wales
SELECTION OF CITATIONS
SEARCH DETAIL
...