Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res A ; 111(11): 1768-1780, 2023 11.
Article in English | MEDLINE | ID: mdl-37465994

ABSTRACT

In-stent restenosis and thrombosis remain to be long-term challenges in coronary stenting procedures. The objective of this study was to evaluate the in vitro biological responses of trimethylsilane (TMS) plasma nanocoatings modified with NH3 /O2 (2:1 molar ratio) plasma post-treatment (TMS + NH3 /O2 nanocoatings) on cobalt chromium (CoCr) alloy L605 coupons, L605 stents, and 316L stainless steel (SS) stents. Surface properties of the plasma nanocoatings with up to 2-year aging time were characterized by wettability assessment and x-ray photoelectron spectroscopy (XPS). It was found that TMS + NH3 /O2 nanocoatings had a surface composition of 41.21 ± 1.06 at% oxygen, 31.90 ± 1.08 at% silicon, and 24.12 ± 1.7 at% carbon, and very small but essential amount of 2.77 ± 0.18 at% nitrogen. Surface chemical stability of the plasma coatings was noted with persistent O/Si atomic ratio of 1.292-1.413 and N/Si atomic ratio of ~0.087 through 2 years. The in vitro biological responses of plasma nanocoatings were studied by evaluating the cell proliferation and migration of porcine coronary artery endothelial cells (PCAECs) and smooth muscle cells (PCASMCs). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay results revealed that, after 7-day incubation, TMS + NH3 /O2 nanocoatings maintained a similar level of PCAEC proliferation while showing a decrease in the viability of PCASMCs by 73 ± 19% as compared with uncoated L605 surfaces. Cell co-culture of PCAECs and PCASMCs results showed that, the cell ratio of PCAEC/PCASMC on TMS + NH3 /O2 nanocoating surfaces was 1.5-fold higher than that on uncoated L605 surfaces, indicating enhanced selectivity for promoting PCAEC growth. Migration test showed comparable PCAEC migration distance for uncoated L605 and TMS + NH3 /O2 nanocoatings. In contrast, PCASMC migration distance was reduced nearly 8.5-fold on TMS + NH3 /O2 nanocoating surfaces as compared to the uncoated L605 surfaces. Platelet adhesion test using porcine whole blood showed lower adhered platelets distribution (by 70 ± 16%), reduced clotting attachment (by 54 ± 12%), and less platelet activation on TMS + NH3 /O2 nanocoating surfaces as compared with the uncoated L605 controls. It was further found that, under shear stress conditions of simulated blood flow, TMS + NH3 /O2 nanocoating significantly inhibited platelet adhesion compared to the uncoated 316L SS stents and TMS nanocoated 316L SS stents. These results indicate that TMS + NH3 /O2 nanocoatings are very promising in preventing both restenosis and thrombosis for coronary stent applications.


Subject(s)
Endothelial Cells , Thrombosis , Animals , Swine , Stents , Blood Platelets/metabolism , Blood Coagulation , Chromium Alloys , Thrombosis/prevention & control
2.
J Thromb Haemost ; 15(4): 814-825, 2017 04.
Article in English | MEDLINE | ID: mdl-28079982

ABSTRACT

Essentials New strategies are needed to inhibit thrombosis and intimal hyperplasia (IH) in vein grafts (VG). We studied effects of apyrase (APT102) on VGs and smooth muscle and endothelial cells (SMC/EC). APT102 inhibited thrombosis, SMC migration, and IH without impairing hemostasis or EC recovery. Apyrase APT102 is a single-drug approach to inhibit multiple processes that cause VG failure. SUMMARY: Background Occlusion of vein grafts (VGs) after bypass surgery, owing to thrombosis and intimal hyperplasia (IH), is a major clinical problem. Apyrases are enzymes that scavenge extracellular ATP and ADP, and promote adenosine formation at sites of vascular injury, and hence have the potential to inhibit VG pathology. Objectives To examine the effects of recombinant soluble human apyrase, APT102, on platelets, smooth muscle cells (SMCs) and endothelial cells (ECs) in vitro, and on thrombosis and IH in murine VGs. Methods SMC and EC proliferation and migration were studied in vitro. Inferior vena cava segments from donor mice were grafted into carotid arteries of recipient mice. Results APT102 potently inhibited ADP-induced platelet aggregation and VG thrombosis, but it did not impair surgical hemostasis. APT102 did not directly inhibit SMC or EC proliferation, but significantly attenuated the effects of ATP on SMC and EC proliferation. APT102 significantly inhibited SMC migration, but did not inhibit EC migration, which may be mediated, at least in part, by inhibition of SMC, but not EC, migration by adenosine. At 4 weeks after surgery, there was significantly less IH in VGs of APT102-treated mice than in control VGs. APT102 significantly inhibited cell proliferation in VGs, but did not inhibit re-endothelialization. Conclusions Systemic administration of a recombinant human apyrase inhibits thrombosis and IH in VGs without increasing bleeding or compromising re-endothelialization. These results suggest that APT102 has the potential to become a novel, single-drug treatment strategy to prevent multiple pathologic processes that drive early adverse remodeling and occlusion of VGs.


Subject(s)
Apyrase/pharmacology , Blood Vessels/transplantation , Recombinant Proteins/pharmacology , Thrombosis/drug therapy , Tunica Intima/drug effects , Adenosine/chemistry , Adenosine Triphosphatases/chemistry , Animals , Blood Platelets/cytology , Carotid Arteries/pathology , Cell Movement , Cell Proliferation , Coronary Vessels/pathology , Endothelial Cells/pathology , Endothelium, Vascular/pathology , Hemostasis , Humans , Hyperplasia , Male , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/cytology , Platelet Aggregation , Prothrombin Time , Solubility , Tunica Intima/pathology
3.
J Thromb Haemost ; 12(10): 1667-77, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25081365

ABSTRACT

BACKGROUND: C-reactive protein (CRP) promotes tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) expression in vitro, and an elevated plasma CRP concentration is associated with an increased risk of vein graft (VG) thrombosis after coronary artery bypass surgery. However, little is known about the effects of CRP on VG TF and PAI-1 expression in vivo, or on VG thrombosis. OBJECTIVES: We studied transgenic (Tg) mice expressing human CRP in a VG model to explore in vivo cause-and-effect relationships between CRP and TF, PAI-1, and VG thrombosis. METHODS: Vein segments from wild-type (WT) and CRP-Tg donors were transplanted into carotid arteries of WT and CRP-Tg recipients. VGs were analyzed 1-4 weeks later. RESULTS: Human CRP accumulated in VGs during the first 4 weeks after surgery, but appeared to originate exclusively from systemic sources, rather than local production. Human CRP significantly increased TF gene expression, protein concentration and activity in VGs. Human CRP also increased PAI-1 concentrations in VGs, although only in vascular endothelial cells. Human CRP stimulated macrophage migration, invasion into VGs, and TF expression. Fibrin deposition was significantly greater in VGs of CRP-Tg mice than in WT controls. CONCLUSIONS: CRP accumulates in VGs early after surgery, originating from systemic sources rather than local synthesis. Human CRP promotes TF and PAI-1 expression in VGs, although with different expression patterns. Human CRP stimulates macrophage invasion and fibrin deposition within VGs. These results suggest that CRP induces pathologic changes in VGs that contribute to early VG occlusion.


Subject(s)
C-Reactive Protein/metabolism , Fibrin/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Thromboplastin/metabolism , Veins/transplantation , Animals , Cell Movement , Chlorides/chemistry , Coronary Artery Bypass , Ferric Compounds/chemistry , Humans , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Recombinant Proteins/metabolism , Transgenes , Venous Thrombosis/blood
4.
J Thromb Haemost ; 8(8): 1847-54, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20492459

ABSTRACT

BACKGROUND: Vascular smooth muscle cell (VSMC) migration is a critical process in arterial remodeling. Purified plasminogen activator inhibitor-1 (PAI-1) is reported to both promote and inhibit VSMC migration on two-dimensional (D) surfaces. OBJECTIVE: To determine the effects of PAI-1 and vitronectin (VN) expressed by VSMC themselves on migration through physiological collagen matrices. METHODS: We studied migration of wild-type (WT), PAI-1-deficient, VN-deficient, PAI-1/VN doubly-deficient (DKO) and PAI-1-transgenic (Tg) VSMC through three-D collagen gels. RESULTS: WT VSMC migrated significantly slower than PAI-1- and VN-deficient VSMC, but significantly faster than DKO VSMC. Experiments with recombinant PAI-1 suggested that basal VSMC PAI-1 expression inhibits migration by binding VN, which is secreted by VSMC and binds collagen. However, PAI-1-over-expressing Tg VSMC migrated faster than WT VSMC. Reconstitution experiments with recombinant PAI-1 mutants suggested that the pro-migratory effect of PAI-1 over-expression required its anti-plasminogen activator (PA) and LDL receptor-related protein (LRP) binding functions, but not VN binding. While promoting VSMC migration in the absence of PAI-1, VN inhibited the pro-migratory effect of active PAI-1. CONCLUSIONS: In isolation, VN and PAI-1 are each pro-migratory. However, via formation of a high-affinity, non-motogenic complex, PAI-1 and VN each buffers the other's pro-migratory effect. The level of PAI-1 expression by VSMC and the concentration of VN in extracellular matrix are critical determinants of whether PAI-1 and VN promote or inhibit migration. These findings help to rectify previously conflicting reports and suggest that PAI-1/VN stoichiometry plays an important role in VSMC migration and vascular remodeling.


Subject(s)
Collagen/chemistry , Gene Expression Regulation , Muscle, Smooth, Vascular/cytology , Muscle, Smooth/cytology , Plasminogen Activator Inhibitor 1/metabolism , Vitronectin/metabolism , Animals , Aorta/cytology , Cell Movement , Gels/chemistry , Humans , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plasminogen Activator Inhibitor 1/genetics , Vitronectin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...