Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(16)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37629940

ABSTRACT

The main objective of this article is to provide new information on the effects of mechanical pretreatment of AZ80 magnesium alloy ground with SiC emery papers of different grain sizes on the plasma electrolytic oxidation (PEO) process and corrosion properties of AZ80 in 0.1 M NaCl solution. Then, the roughness of the coated samples was measured by confocal microscopy. The corrosion properties of the ground and coated surfaces were determined by potentiodynamic polarization (PDP) within 1 h of exposure, and electrochemical impedance spectroscopy (EIS) was performed during 168 h of exposure at laboratory temperature. Consequently, the obtained results of the PDP measurements were evaluated by the Tafel analysis and the EIS evaluation was performed by the equivalent circuit analysis through Nyquist diagrams. The morphology and structure of PEO coatings were observed by scanning electron microscopy (SEM) through the secondary imaging technology, and the presence of certain elements in PEO coatings was analyzed by EDS analysis.

2.
Materials (Basel) ; 15(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35744281

ABSTRACT

Plasma electrolytic polishing (PEP) is an environment-friendly alternative to the conventional electrochemical polishing (EP), giving optimal surface properties and improved corrosion resistance with minimum energy and time consumption, which leads to both economic and environmental benefits. This paper is focused on the corrosion behavior of PEP treated AISI 316L stainless steel widely used as a biomaterial. Corrosion resistance of plasma electrolytic polished surfaces without/with chemical pretreatment (acid cleaning) is evaluated and compared with original non-treated (as received) surfaces by three independent test methods: electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PP), and exposure immersion test. All corrosion tests are carried out in the 0.9 wt.% NaCl solution at a temperature of 37 ± 0.5 °C to simulate the internal environment of a human body. The quality of tested surfaces is also characterized by optical microscopy and by the surface roughness parameters. The results obtained indicated high corrosion resistance of PEP treated surfaces also without chemical pretreatment, which increases the ecological benefits of PEP technology.

3.
Materials (Basel) ; 14(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34832193

ABSTRACT

Plasma immersion ion implantation (PIII) of nitrogen is low-temperature surface technology which enables the improvement of tribological properties without a deterioration of the corrosion behavior of austenitic stainless steels. In this paper the corrosion properties of PIII-treated AISI 316L stainless steel surfaces are evaluated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PP) and exposure immersion tests (all carried out in the 0.9 wt. % NaCl solution at 37 ± 0.5 °C) and compared with a non-treated surface. Results of the three performed independent corrosion tests consistently confirmed a significant increase in the corrosion resistance after two doses of PIII nitriding.

SELECTION OF CITATIONS
SEARCH DETAIL
...