Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 284
Filter
1.
Article in English | MEDLINE | ID: mdl-38712373

ABSTRACT

BACKGROUND: In response to inflammation and other stressors, tryptophan is catalyzed by Tryptophan 2,3-Dioxygenase (TDO), which leads to activation of the kynurenine pathway. Sepsis is a serious condition in which the body responds improperly to an infection, and the brain is the inflammation target in this condition. OBJECTIVE: This study aimed to determine if the induction of TDO contributes to the permeability of the Blood-Brain Barrier (BBB), mortality, neuroinflammation, oxidative stress, and mitochondrial dysfunction, besides long-term behavioral alterations in a preclinical model of sepsis. METHODS: Male Wistar rats with two months of age were submitted to the sepsis model using Cecal Ligation and Perforation (CLP). The rats received allopurinol (Allo, 20 mg/kg, gavage), a TDO inhibitor, or a vehicle once a day for seven days. RESULTS: Sepsis induction increased BBB permeability, IL-6 level, neutrophil infiltrate, nitric oxide formation, and oxidative stress, resulting in energy impairment in 24h after CLP and Allo administration restored these parameters. Regarding memory, Allo restored short-term memory impairment and decreased depressive behavior. However, no change in survival rate was verified. CONCLUSION: In summary, TDO inhibition effectively prevented depressive behavior and memory impairment 10 days after CLP by reducing acute BBB permeability, neuroinflammation, oxidative stress, and mitochondrial alteration.

2.
Life Sci ; 349: 122721, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38754813

ABSTRACT

AIMS: Infection is a complication after stroke and outcomes vary by sex. Thus, we investigated if sepsis affects brain from ischemic stroke and sex involvement. MAIN METHODS: Male and female Wistar rats, were submitted to middle cerebral artery occlusion (MCAO) and after 7 days sepsis to cecal ligation and perforation (CLP). Infarct size, neuroinflammation, oxidative stress, and mitochondrial activity were quantified 24 h after CLP in the prefrontal cortex and hippocampus. Survival and neurological score were assessed up to 15 days after MCAO or 8 days after CLP (starting at 2 h after MCAO) and memory at the end. KEY FINDINGS: CLP decreased survival, increased neurological impairments in MCAO females. Early, in male sepsis following MCAO led to increased glial activation in the brain structures, and increased TNF-α and IL-1ß in the hippocampus. All groups had higher IL-6 in both tissues, but the hippocampus had lower IL-10. CLP potentiated myeloperoxidase (MPO) in the prefrontal cortex of MCAO male and female. In MCAO+CLP, only male increased MPO and nitrite/nitrate in hippocampus. Males in all groups had protein oxidation in the prefrontal cortex, but only MCAO+CLP in the hippocampus. Catalase decreased in the prefrontal cortex and hippocampus of all males and females, and MCAO+CLP only increased this activity in males. Female MCAO+CLP had higher prefrontal cortex complex activity than males. In MCAO+CLP-induced long-term memory impairment only in females. SIGNIFICANCE: The parameters evaluated for early sepsis after ischemic stroke show a worse outcome for males, while females are affected during long-term follow-up.


Subject(s)
Ischemic Stroke , Rats, Wistar , Sepsis , Sex Characteristics , Animals , Male , Female , Sepsis/complications , Sepsis/metabolism , Rats , Ischemic Stroke/metabolism , Ischemic Stroke/complications , Ischemic Stroke/pathology , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Oxidative Stress , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Recovery of Function , Sex Factors , Brain Ischemia/metabolism , Brain Ischemia/complications , Peroxidase/metabolism
3.
Mol Neurobiol ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38296901

ABSTRACT

Obesity causes inflammation in the adipose tissue and can affect the central nervous system, leading to oxidative stress and mitochondrial dysfunction. Therefore, it becomes necessary to seek new therapeutic alternatives. Gold nanoparticles (GNPs) could take carnitine to the adipose tissue, thus increasing fatty acid oxidation, reducing inflammation, and, consequently, restoring brain homeostasis. The objective of this study was to investigate the effects of GNPs associated with carnitine on the neurochemical parameters of obesity-induced mice. Eighty male Swiss mice that received a normal lipid diet (control group) or a high-fat diet (obese group) for 10 weeks were used. At the end of the sixth week, the groups were divided for daily treatment with saline, GNPs (70 µg/kg), carnitine (500 mg/kg), or GNPs associated with carnitine, respectively. Body weight was monitored weekly. At the end of the tenth week, the animals were euthanized and the mesenteric fat removed and weighed; the brain structures were separated for biochemical analysis. It was found that obesity caused oxidative damage and mitochondrial dysfunction in brain structures. Treatment with GNPs isolated reduced oxidative stress in the hippocampus. Carnitine isolated decreased the accumulation of mesenteric fat and oxidative stress in the hippocampus. The combination of treatments reduced the accumulation of mesenteric fat and mitochondrial dysfunction in the striatum. Therefore, these treatments in isolation, become a promising option for the treatment of obesity.

4.
Mol Neurobiol ; 61(7): 4908-4922, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38151612

ABSTRACT

Carnosine is composed of ß-alanine and L-histidine and is considered to be an important neuroprotective agent with antioxidant, metal chelating, and antisenescence properties. However, children with serum carnosinase deficiency present increased circulating carnosine and severe neurological symptoms. We here investigated the in vitro effects of carnosine on redox and mitochondrial parameters in cultured cortical astrocytes from neonatal rats. Carnosine did not alter mitochondrial content or mitochondrial membrane potential. On the other hand, carnosine increased mitochondrial superoxide anion formation, levels of thiobarbituric acid reactive substances and oxidation of 2',7'-dichlorofluorescin diacetate (DCF-DA), indicating that carnosine per se acts as a pro-oxidant agent. Nonetheless, carnosine prevented DCF-DA oxidation induced by H2O2 in cultured cortical astrocytes. Since alterations on mitochondrial membrane potential are not likely to be involved in these effects of carnosine, the involvement of N-Methyl-D-aspartate (NMDA) receptors in the pro-oxidant actions of carnosine was investigated. MK-801, an antagonist of NMDA receptors, prevented DCF-DA oxidation induced by carnosine in cultured cortical astrocytes. Astrocyte reactivity induced by carnosine was also prevented by the coincubation with MK-801. The present study shows for the very first time the pro-oxidant effects of carnosine per se in astrocytes. The data raise awareness on the importance of a better understanding of the biological actions of carnosine, a nutraceutical otherwise widely reported as devoid of side effects.


Subject(s)
Astrocytes , Carnosine , Cerebral Cortex , Rats, Wistar , Reactive Oxygen Species , Animals , Carnosine/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Cells, Cultured , Reactive Oxygen Species/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Membrane Potential, Mitochondrial/drug effects , Animals, Newborn , Rats , Mitochondria/metabolism , Mitochondria/drug effects , Receptors, N-Methyl-D-Aspartate/metabolism , Hydrogen Peroxide , Oxidation-Reduction/drug effects
5.
Neurochem Res ; 49(3): 758-770, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38104040

ABSTRACT

Maple Syrup Urine Disease (MSUD) is a metabolic disease characterized by the accumulation of branched-chain amino acids (BCAA) in different tissues due to a deficit in the branched-chain alpha-ketoacid dehydrogenase complex. The most common symptoms are poor feeding, psychomotor delay, and neurological damage. However, dietary therapy is not effective. Studies have demonstrated that memantine improves neurological damage in neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Therefore, we hypothesize that memantine, an NMDA receptor antagonist can ameliorate the effects elicited by BCAA in an MSUD animal model. For this, we organized the rats into four groups: control group (1), MSUD group (2), memantine group (3), and MSUD + memantine group (4). Animals were exposed to the MSUD model by the administration of BCAA (15.8 µL/g) (groups 2 and 4) or saline solution (0.9%) (groups 1 and 3) and treated with water or memantine (5 mg/kg) (groups 3 and 4). Our results showed that BCAA administration induced memory alterations, and changes in the levels of acetylcholine in the cerebral cortex. Furthermore, induction of oxidative damage and alterations in antioxidant enzyme activities along with an increase in pro-inflammatory cytokines were verified in the cerebral cortex. Thus, memantine treatment prevented the alterations in memory, acetylcholinesterase activity, 2',7'-Dichlorofluorescein oxidation, thiobarbituric acid reactive substances levels, sulfhydryl content, and inflammation. These findings suggest that memantine can improve the pathomechanisms observed in the MSUD model, and may improve oxidative stress, inflammation, and behavior alterations.


Subject(s)
Maple Syrup Urine Disease , Rats , Animals , Maple Syrup Urine Disease/drug therapy , Maple Syrup Urine Disease/metabolism , Memantine/pharmacology , Memantine/therapeutic use , Acetylcholinesterase , Disease Models, Animal , Amino Acids, Branched-Chain , Antioxidants/pharmacology , Inflammation
6.
Behav Brain Res ; 451: 114526, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37271313

ABSTRACT

This study aimed to evaluate the behavioral and energy metabolism parameters in female mice subjected to obesity and offspring deprivation (OD) stress. Eighty female Swiss mice, 40 days old, were weighed and divided into two groups: Control group (control diet, n = 40) and Obese group (high-fat diet, n = 40), for induction of the animal model of obesity, the protocol was based on the consumption of a high-fat diet and lasted 8 weeks. Subsequently, the females were subjected to pregnancy, after the birth of the offspring, were divided again into the following groups (n = 20): Control non-deprived (ND), Control + OD, Obese ND, and Obese + OD, for induction of the stress protocol by OD. After the offspring were 21 days old, weaning was performed and the dams were subjected to behavioral tests. The animals were humanely sacrificed, the brain was removed, and brain structures were isolated to assess energy metabolism. Both obesity and OD led to anhedonia in the dams. It was shown that the structures most affected by obesity and OD are the hypothalamus and hippocampus, as evidenced by the mitochondrial dysfunction found in these structures. When analyzing the groups separately, it was observed that OD led to more pronounced mitochondrial damage; however, the association of obesity with OD, as well as obesity alone, also generated damage. Thus, it is concluded that obesity and OD lead to anhedonia in animals and to mitochondrial dysfunction in the hypothalamus and hippocampus, which may lead to losses in feeding control and cognition of the dams.


Subject(s)
Anhedonia , Prenatal Exposure Delayed Effects , Pregnancy , Mice , Female , Animals , Humans , Obesity/metabolism , Diet, High-Fat/adverse effects , Weaning , Energy Metabolism
7.
Metab Brain Dis ; 38(6): 2105-2114, 2023 08.
Article in English | MEDLINE | ID: mdl-37099078

ABSTRACT

Maple syrup urine disease (MSUD) is an inherited metabolic disorder caused by a deficiency in branched-chain alpha-ketoacid dehydrogenase complex (BCKAC). The treatment is a standard therapy based on a protein-restricted diet with low branched-chain amino acids (BCAA) content to reduce plasma levels and, consequently, the effects of accumulating their metabolites, mainly in the central nervous system. Although the benefits of dietary therapy for MSUD are undeniable, natural protein restriction may increase the risk of nutritional deficiencies, resulting in a low total antioxidant status that can predispose and contribute to oxidative stress. As MSUD is related to redox and energy imbalance, melatonin can be an important adjuvant treatment. Melatonin directly scavenges the hydroxy radical, peroxyl radical, nitrite anion, and singlet oxygen and indirectly induces antioxidant enzyme production. Therefore, this study assesses the role of melatonin treatment on oxidative stress in brain tissue and behavior parameters of zebrafish (Danio rerio) exposed to two concentrations of leucine-induced MSUD: leucine 2 mM and 5mM; and treated with 100 nM of melatonin. Oxidative stress was assessed through oxidative damage (TBARS, DCF, and sulfhydryl content) and antioxidant enzyme activity (SOD and CAT). Melatonin treatment improved redox imbalance with reduced TBARS levels, increased SOD activity, and normalized CAT activity to baseline. Behavior was analyzed with novel object recognition test. Animals exposed to leucine improved object recognition due to melatonin treatment. With the above, we can suggest that melatonin supplementation can protect neurologic oxidative stress, protecting leucine-induced behavior alterations such as memory impairment.


Subject(s)
Maple Syrup Urine Disease , Melatonin , Animals , Leucine/adverse effects , Leucine/metabolism , Maple Syrup Urine Disease/metabolism , Zebrafish/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Melatonin/pharmacology , Melatonin/therapeutic use , Thiobarbituric Acid Reactive Substances/metabolism , Oxidative Stress , Amino Acids, Branched-Chain/metabolism , Superoxide Dismutase/metabolism
8.
Metab Brain Dis ; 38(5): 1573-1579, 2023 06.
Article in English | MEDLINE | ID: mdl-36897514

ABSTRACT

Maple Syrup Urine Disease (MSUD) is an autosomal recessive inborn error of metabolism (IEM), responsible for the accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine, in addition to their α-keto acids α-ketoisocaproic acid (KIC), α-keto-ß-methylvaleric acid (KMV), and α-ketoisovaleric acid (KIV) in the plasma and urine of patients. This process occurs due to a partial or total blockage of the dehydrogenase enzyme activity of branched-chain α-keto acids. Oxidative stress and inflammation are conditions commonly observed on IEM, and the inflammatory response may play an essential role in the pathophysiology of MSUD. We aimed to investigate the acute effect of intracerebroventricular (ICV) administration of KIC on inflammatory parameters in young Wistar rats. For this, sixteen 30-day-old male Wistar rats receive ICV microinjection with 8 µmol KIC. Sixty minutes later, the animals were euthanized, and the cerebral cortex, hippocampus, and striatum structures were collected to assess the levels of pro-inflammatory cytokines (INF-γ; TNF-α, IL-1ß). The acute ICV administration of KIC increased INF-γ levels in the cerebral cortex and reduced the levels of INF-γ and TNF-α in the hippocampus. There was no difference in IL-1ß levels. KIC was related to changes in the levels of pro-inflammatory cytokines in the brain of rats. However, the inflammatory mechanisms involved in MSUD are poorly understood. Thus, studies that aim to unravel the neuroinflammation in this pathology are essential to understand the pathophysiology of this IEM.


Subject(s)
Maple Syrup Urine Disease , Tumor Necrosis Factor-alpha , Rats , Animals , Male , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism , Oxidative Stress , Keto Acids/pharmacology , Maple Syrup Urine Disease/drug therapy , Maple Syrup Urine Disease/metabolism , Amino Acids, Branched-Chain/metabolism
9.
Metab Brain Dis ; 38(1): 287-293, 2023 01.
Article in English | MEDLINE | ID: mdl-36305998

ABSTRACT

Maple Syrup Urine Disease (MSUD) is an inborn error of metabolism (EIM) biochemically characterized by the tissue accumulation of branched-chain amino acids (BCAA) and their branched-chain alpha-keto acids. The mechanisms by which BCAA and their branched-chain alpha-keto acids lead to the neurological damage observed in MSUD are poorly understood. Mounting evidence has demonstrated that BCAA induce the overproduction of reactive oxygen species, which may modulate several important signaling pathways necessary for cellular homeostasis maintenance, such as autophagy. Taking this into account, we evaluated the effects of BCAA on the autophagic pathway in brain structures of rats submitted to the administration of these amino acids (animal model of MSUD). Our findings showed that BCAA significantly increased the levels of Beclin-1, ATG7, and ATG5 in the cerebral cortex of rats. In addition, BCAA augmented ATG12 levels in the striatum and ATG5 and LC3 I-II in the hippocampus. Therefore, our work demonstrates that the administration of BCAA increases autophagy and autophagic cell death, possibly mediated by the elevated levels of reactive species generated by BCAA.


Subject(s)
Maple Syrup Urine Disease , Rats , Animals , Maple Syrup Urine Disease/metabolism , Amino Acids, Branched-Chain/metabolism , Rats, Wistar , Disease Models, Animal , Brain/metabolism , Keto Acids , Autophagy
10.
RGO (Porto Alegre) ; 71: e20230028, 2023. tab
Article in English | LILACS-Express | LILACS, BBO - Dentistry | ID: biblio-1449022

ABSTRACT

Objective Purpose: To assess the influence of sleep disorders on temporal and jaw pain in the morning in adults and elderly people. Methods: Population-based study with representative individuals aged 18 years or over. Individuals were selected using a multistage sampling procedure. The outcomes of morning jaw pain and morning temporal pain were assessed. Sleep bruxism, obstructive sleep apnea, and sleep quality were evaluated as exposure variables. Adjusted analysis was conducted using Poisson regression. All analysis was sex stratified. Results: 820 individuals were studied. Female with sleep bruxism were 1.37 times more likely to have morning temporal pain (p=0.041). Male and female with bruxism had a prevalence 160% and 97%, respectively, higher of morning jaw pain (male: p=0.003; female: p<0.001). Women with obstructive sleep apnea were 1.52 times more likely to have morning temporal pain (p=0.023). Men with poor sleep quality had a prevalence 190% higher of morning temporal pain (p=0.005). Conclusion: Morning craniofacial pain is more frequent in individuals with sleep disorders, and there are differences between sexes. Since more than one sleep disorder can be present in the same individual, studies that adjust the analyses for possible confounders are important to avoiding possible overlap between them.


RESUMO Objetivo: Avaliar a influência dos distúrbios do sono nas dores temporais e mandibulares pela manhã em adultos e idosos. Métodos: Estudo de base populacional realizado com uma amostra representativa de indivíduos com 18 anos ou mais. Os participantes foram selecionados por meio de um processo amostral com múltiplos estágios. Os desfechos avaliados foram a dor matinal na mandíbula e a dor temporal matinal. Apneia obstrutiva do sono, bruxismo do sono e qualidade do sono foram as variáveis de exposição avaliadas. Análise ajustada foi realizada através da Regressão de Poisson e todas as análises foram estratificadas por sexo. Resultados: Foram estudados 820 indivíduos. Mulheres com bruxismo do sono tiveram 1,37 vezes mais chance de ter dor temporal matinal (p=0,041). Homens e mulheres com bruxismo tiveram uma prevalência 160% e 97%, respectivamente, maior de dor matinal na mandíbula (homens: p=0,003; mulheres: p<0,001). Mulheres com apneia obstrutiva do sono tiveram 1,52 vezes mais chance de ter dor temporal matinal (p=0,023). Homens com má qualidade do sono tiveram prevalência 190% maior de dor temporal matinal (p=0,005). Conclusão: Dor craniofacial matinal é mais frequente em indivíduos com distúrbios do sono e há diferenças entre os sexos. Uma vez que mais de um distúrbio do sono pode estar presente no mesmo indivíduo, estudos que ajustem as análises para possíveis confundidores são importantes para evitar uma possível sobreposição entre eles.

11.
An Acad Bras Cienc ; 94(suppl 4): e20211081, 2022.
Article in English | MEDLINE | ID: mdl-36541976

ABSTRACT

Cholesterol is a lipid molecule of great biological importance to animal cells. Dysregulation of cholesterol metabolism leads to raised blood total cholesterol levels, a clinical condition called hypercholesterolemia. Evidence has shown that hypercholesterolemia is associated with the development of liver and heart disease. One of the mechanisms underlying heart and liver alterations induced by hypercholesterolemia is oxidative stress. In this regard, in several experimental studies, gold nanoparticles (AuNP) displayed antioxidant properties. We hypothesized that hypercholesterolemia causes redox system imbalance in the liver and cardiac tissues, and AuNP treatment could ameliorate it. Young adult male Swiss mice fed a regular rodent diet or a high cholesterol diet for eight weeks and concomitantly treated with AuNP (2.5 µg/kg) or vehicle by oral gavage. Hypercholesterolemia increased the nitrite concentration and glutathione (GSH) levels and decreased the liver's superoxide dismutase (SOD) activity. Also, hypercholesterolemia significantly enhanced the reactive oxygen species (ROS) and GSH levels in cardiac tissue. Notably, AuNP promoted the redox system homeostasis, increasing the SOD activity in hepatic tissue and reducing ROS levels in cardiac tissue. Overall, our data showed that hypercholesterolemia triggered oxidative stress in mice's liver and heart, which was partially prevented by AuNP treatment.


Subject(s)
Hypercholesterolemia , Metal Nanoparticles , Mice , Animals , Male , Hypercholesterolemia/drug therapy , Hypercholesterolemia/etiology , Gold/metabolism , Gold/pharmacology , Gold/therapeutic use , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Cholesterol , Oxidative Stress , Diet , Liver , Glutathione , Superoxide Dismutase/metabolism
12.
J Neuroinflammation ; 19(1): 268, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36333747

ABSTRACT

The pathophysiology of sepsis may involve the activation of the NOD-type receptor containing the pyrin-3 domain (NLPR-3), mitochondrial and oxidative damages. One of the primary essential oxidation products is 8-oxoguanine (8-oxoG), and its accumulation in mitochondrial DNA (mtDNA) induces cell dysfunction and death, leading to the hypothesis that mtDNA integrity is crucial for maintaining neuronal function during sepsis. In sepsis, the modulation of NLRP-3 activation is critical, and mefenamic acid (MFA) is a potent drug that can reduce inflammasome activity, attenuating the acute cerebral inflammatory process. Thus, this study aimed to evaluate the administration of MFA and its implications for the reduction of inflammatory parameters and mitochondrial damage in animals submitted to polymicrobial sepsis. To test our hypothesis, adult male Wistar rats were submitted to the cecal ligation and perforation (CLP) model for sepsis induction and after receiving an injection of MFA (doses of 10, 30, and 50 mg/kg) or sterile saline (1 mL/kg). At 24 h after sepsis induction, the frontal cortex and hippocampus were dissected to analyze the levels of TNF-α, IL-1ß, and IL-18; oxidative damage (thiobarbituric acid reactive substances (TBARS), carbonyl, and DCF-DA (oxidative parameters); protein expression (mitochondrial transcription factor A (TFAM), NLRP-3, 8-oxoG; Bax, Bcl-2 and (ionized calcium-binding adaptor molecule 1 (IBA-1)); and the activity of mitochondrial respiratory chain complexes. It was observed that the septic group in both structures studied showed an increase in proinflammatory cytokines mediated by increased activity in NLRP-3, with more significant oxidative damage and higher production of reactive oxygen species (ROS) by mitochondria. Damage to mtDNA it was also observed with an increase in 8-oxoG levels and lower levels of TFAM and NGF-1. In addition, this group had an increase in pro-apoptotic proteins and IBA-1 positive cells. However, MFA at doses of 30 and 50 mg/kg decreased inflammasome activity, reduced levels of cytokines and oxidative damage, increased bioenergetic efficacy and reduced production of ROS and 8-oxoG, and increased levels of TFAM, NGF-1, Bcl-2, reducing microglial activation. As a result, it is suggested that MFA induces protection in the central nervous system early after the onset of sepsis.


Subject(s)
Mefenamic Acid , Sepsis , Animals , Rats , Male , Reactive Oxygen Species/metabolism , Mefenamic Acid/metabolism , Mefenamic Acid/pharmacology , Rats, Wistar , Inflammasomes/metabolism , Nerve Growth Factor/metabolism , Mitochondria , Sepsis/complications , Sepsis/drug therapy , DNA, Mitochondrial , Cytokines/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism
13.
Metab Brain Dis ; 37(8): 2925-2935, 2022 12.
Article in English | MEDLINE | ID: mdl-36040712

ABSTRACT

Maple Syrup Urine Disease (MSUD) is a metabolic disorder characterized by high levels in blood and urine of branched-chain amino acids leucine, isoleucine, and valine and their alpha-ketoacids, by a partial or total blockade in the activity of branched-chain complex alpha-keto acids dehydrogenase. The main symptoms in MSUD occur in the central nervous system, including cognitive deficits, locomotor, poor feeding, seizures, psychomotor delay, and mental retardation, but the mechanisms of neurotoxicity and behavior alteration due to this disease are poorly understood, thus this study aimed at showing the effects of leucine exposure on glutamate levels and behavior in zebrafish. For this, we analyzed the behavior using the social preference test and novel object recognition test, moreover, we analyse the glutamate levels and uptake using scintillation and high-performance liquid chromatography methods. Our results demonstrated a decrease in glutamate levels and uptake, accompanied by memory and social impairment. In conclusion, these results suggest that alterations in glutamate levels can be associated with behavior impairment, however, more studies are necessary to understand the mechanisms for brain damage in MSUD.


Subject(s)
Maple Syrup Urine Disease , Zebrafish , Animals , Leucine , Glutamic Acid , Maple Syrup Urine Disease/metabolism , Amino Acids, Branched-Chain/pharmacology
14.
Inflammation ; 45(6): 2352-2367, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35689164

ABSTRACT

Sepsis is a life-threatening organ dysfunction, which demands notable attention for its treatment, especially in view of the involvement of immunodepressed patients, as the case of patients with diabetes mellitus (DM), who constitute a population susceptible to develop infections. Thus, considering this endocrine pathology as an implicatory role on the immune system, the aim of this study was to show the relationship between this disease and sepsis on neuroinflammatory and neurochemical parameters. Levels of IL-6, IL-10, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and mitochondrial respiratory chain complexes were evaluated in the hippocampus and prefrontal cortex 24 h after sepsis by cecal ligation and perforation (CLP) in Wistar rats induced to type 1 diabetes by alloxan (150 mg/kg). It was verified that diabetes implied immune function after 24 h of sepsis, since it contributed to the increase of the inflammatory process with higher production of IL-6 and decreased levels of IL-10 only in the hippocampus. In the same brain area, a several decrease in NGF level and activity of complexes I and II of the mitochondrial respiratory chain were observed. Thus, diabetes exacerbates neuroinflammation and results in mitochondrial impairment and downregulation of NGF level in the hippocampus after sepsis.


Subject(s)
Diabetes Mellitus , Sepsis , Animals , Rats , Rats, Wistar , Nerve Growth Factor/metabolism , Interleukin-10/metabolism , Interleukin-6/metabolism , Neuroinflammatory Diseases , Brain/metabolism , Sepsis/metabolism , Mitochondria/metabolism , Disease Models, Animal
15.
J Neuroinflammation ; 19(1): 114, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35606817

ABSTRACT

BACKGROUND: Sepsis is a potentially fatal disease characterized by acute organ failure that affects more than 30 million people worldwide. Inflammation is strongly associated with sepsis, and patients can experience impairments in memory, concentration, verbal fluency, and executive functioning after being discharged from the hospital. We hypothesize that sepsis disrupts the microbiota-gut-brain axis homeostasis triggering cognitive impairment. This immune activation persists during treatment, causing neurological dysfunction in sepsis survivors. METHODS: To test our hypothesis, adult Wistar rats were subjected to cecal-ligation and perforation (CLP) or sham (non-CLP) surgeries. The animals were subjected to the [11C]PBR28 positron emission tomography (PET)/computed tomography (CT) imaging at 24 h and 10 days after CLP and non-CLP surgeries. At 24 h and 10 days after surgery, we evaluated the gut microbiome, bacterial metabolites, cytokines, microglia, and astrocyte markers. Ten days after sepsis induction, the animals were subjected to the novel object recognition (NOR) and the Morris water maze (MWM) test to assess their learning and memory. RESULTS: Compared to the control group, the 24-h and 10-day CLP groups showed increased [11C]PBR28 uptake, glial cells count, and cytokine levels in the brain. Results show that sepsis modulates the gut villus length and crypt depth, alpha and beta microbial diversities, and fecal short-chain fatty acids (SCFAs). In addition, sepsis surviving animals showed a significant cognitive decline compared with the control group. CONCLUSIONS: Since several pharmacological studies have failed to prevent cognitive impairment in sepsis survivors, a better understanding of the function of glial cells and gut microbiota can provide new avenues for treating sepsis patients.


Subject(s)
Brain-Gut Axis , Cognitive Dysfunction , Sepsis , Animals , Brain/diagnostic imaging , Brain/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cytokines/metabolism , Gastrointestinal Microbiome , Humans , Rats , Rats, Wistar , Sepsis/complications , Sepsis/drug therapy
16.
Metab Brain Dis ; 37(5): 1585-1596, 2022 06.
Article in English | MEDLINE | ID: mdl-35394251

ABSTRACT

Maple Syrup Urine Disease (MSUD) is caused by the deficiency in the activity of the branched-chain α-ketoacid dehydrogenase complex (BCKDC), resulting in the accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine, and their respective branched-chain α-keto acids. Patients with MSUD are at high risk of developing chronic neuropsychiatric disorders; however, the pathophysiology of brain damage in these patients remains unclear. We hypothesize that MSUD can cause depressive symptoms in patients. To test our hypothesis, Wistar rats were submitted to the BCAA and tianeptine (antidepressant) administration for 21 days, starting seven days postnatal. Depression-like symptoms were assessed by testing for anhedonia and forced swimming after treatments. After the last test, the brain structures were dissected for the evaluation of neutrophins. We demonstrate that chronic BCAA administration induced depressive-like behavior, increased BDNF levels, and decreased NGF levels, suggesting a relationship between BCAA toxicity and brain damage, as observed in patients with MSUD. However, the administration of tianeptine was effective in preventing behavioral changes and restoring neurotrophins levels.


Subject(s)
Maple Syrup Urine Disease , Thiazepines , Amino Acids, Branched-Chain/metabolism , Animals , Maple Syrup Urine Disease/metabolism , Nerve Growth Factors/metabolism , Rats , Rats, Wistar , Thiazepines/pharmacology
17.
Metab Brain Dis ; 37(4): 1155-1161, 2022 04.
Article in English | MEDLINE | ID: mdl-35275349

ABSTRACT

Maple Syrup Urine Disease (MSUD) is an autosomal recessive inherited disorder caused by a deficiency in the activity of the branched-chain alpha-ketoacid dehydrogenase complex leading to the accumulation of branched-chain amino acids (BCAA) leucine, isoleucine, and valine and their respective branched-chain α-ketoacids and corresponding hydroxy acids. Considering that Danio rerio, known as zebrafish, has been widely used as an experimental model in several research areas because it has favorable characteristics that complement other experimental models, this study aimed to evaluate oxidative stress parameters in zebrafish exposed to high levels of leucine (2 mM and 5 mM), in a model similar of MSUD. Twenty-four hours after exposure, the animals were euthanized, and the brain content dissected for analysis of oxidative stress parameters: thiobarbituric acid reactive substances (TBARS), 2',7'-dichlorofluorescein oxidation assay (DCF); content of sulfhydryl, and superoxide dismutase (SOD) and catalase (CAT) activities. Animals exposed to 2 mM and 5 mM leucine showed an increase in the measurement of TBARS and decreased sulfhydryl content. There were no significant changes in DCF oxidation. In addition, animals exposed to 2 mM and 5 mM leucine were found to have decreased SOD activity and increased CAT activity. Based on these results, exposure of zebrafish to high doses of leucine can act as a promising animal model for MSUD, providing a better understanding of the toxicity profile of leucine exposure and its use in future investigations and strategies related to the pathophysiology of MSUD.


Subject(s)
Maple Syrup Urine Disease , Zebrafish , Animals , Antioxidants/pharmacology , Brain/metabolism , Leucine/metabolism , Leucine/pharmacology , Maple Syrup Urine Disease/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Zebrafish/metabolism
18.
Neurochem Res ; 47(3): 613-621, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34674138

ABSTRACT

Critical illness encompasses a wide spectrum of life-threatening clinical conditions requiring intensive care. Our objective was to evaluate cognitive, inflammatory and cellular metabolism alterations in the central nervous system in an animal model of critical illness induced by zymosan. For this Wistar rats that were divided into Sham and zymosan. Zymozan was administered once intraperitoneally (30 g/100 g body weight) diluted in mineral oil. The animals were submitted to behavioral tests of octagonal maze, inhibitory avoidance and elevated plus maze. Brain structures (cortex, prefrontal and hippocampus) were removed at 24 h, 4, 7 and 15 days after zymosan administration for analysis of cytokine levels (TNF-α, IL-1b, IL-6 and IL-10), oxidative damage and oxygen consumption. Zymosan-treated animals presented mild cognitive impairment both in aversive (inhibitory avoidance) and non-aversive (octagonal maze) tasks by day 15. However, they did not show increase in anxiety (elevated-plus maze). The first neurochemical alteration found was an increase in brain pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α) at day 4th in the hippocampus. In cortex, a late (7 and 15 days) increase in TNF-α was also noted, while the anti-inflammatory cytokine IL-10 decrease from 4 to 15 days. Oxygen consumption was decreased in the hippocampus and pre-frontal, but not cortex, only at 7 days. Additionally, it was observed a late (15 days) increase in oxidative damage parameters. This characterization of brain dysfunction in rodent model of critical illness reproduces some of the alterations reported in humans such neuropsychiatric disorders, especially depression, memory loss and cognitive changes and can add to the nowadays used models.


Subject(s)
Cognitive Dysfunction , Critical Illness , Animals , Brain/metabolism , Cognitive Dysfunction/metabolism , Disease Models, Animal , Hippocampus/metabolism , Oxidative Stress/physiology , Rats , Rats, Wistar , Rodentia
19.
Metab Brain Dis ; 36(7): 1673-1685, 2021 10.
Article in English | MEDLINE | ID: mdl-34212298

ABSTRACT

Tissue exposure to high levels of tyrosine, which is characteristic of an inborn error of metabolism named Tyrosinemia, is related to severe symptoms, including neurological alterations. The clinical manifestations and pathogenesis of tyrosine neurotoxicity can be recapitulated in experimental models in vivo and in vitro. A widely used experimental model to study brain tyrosine damage is the chronic and acute administration of this amino acid in infant rats. Other research groups and we have extensively studied the pathogenic events in the brain structures of rats exposed to high tyrosine levels. Rats administered acutely and chronically with tyrosine presented decreased and inhibition of the essential metabolism enzymes, e.g., Krebs cycle enzymes and mitochondrial respiratory complexes in the brain structures. These alterations induced by tyrosine toxicity were associated with brain oxidative stress, astrocytes, and, ultimately, cognitive impairments. Notably, in vivo data were corroborated by in vitro studies using cerebral regions homogenates incubated with tyrosine excess. Considering metabolism's importance to brain functioning, we hypothesized that mitochondrial and metabolic dysfunctions are closely related to neurological alterations induced by tyrosine neurotoxicity. Herein, we reviewed the main mechanisms associated with tyrosine neurotoxicity in experimental models, emphasizing the role of mitochondrial dysfunction.


Subject(s)
Mitochondria/drug effects , Neurotoxicity Syndromes/etiology , Tyrosine/toxicity , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Disease Models, Animal , Energy Metabolism/drug effects , Humans , Mitochondria/physiology , Rats
20.
Metab Brain Dis ; 36(5): 1057-1067, 2021 06.
Article in English | MEDLINE | ID: mdl-33616841

ABSTRACT

D-galactose (D-gal) is a carbohydrate widely distributed in regular diets. However, D-gal administration in rodents is associated with behavioral and neurochemical alterations similar to features observed in aging. In this regard, this study aimed to investigate the effects of D-gal exposure, in different periods, in rats' brain regions' activities of creatine kinase (CK) and tricarboxylic acid (TCA) cycle enzymes. Male adult Wistar rats received D-gal (100 mg/kg, gavage) for 1, 2, 4, 6 or 8 weeks. CK and TCA enzymes' activities were evaluated in rats' prefrontal cortex and hippocampus. In general, the results showed an increase in citrate synthase (CS) and succinate dehydrogenase (SDH) activities in animals treated with D-gal compared to the control group in the prefrontal cortex and hippocampus. Also, in the fourth week, the malate dehydrogenase (MD) activity increased in the hippocampus of rats that received D-gal compared to control rats. In addition, we observed an increase in the CK activity in the prefrontal cortex and hippocampus in the first and eighth weeks of treatment in the D-gal group compared to the control group. D-gal administration orally administered modulated TCA cycle enzymes and CK activities in the prefrontal cortex and hippocampus, which were also observed in aging and neurodegenerative diseases. However, more studies using experimental models are necessary to understand better the impact and contribution of these brain metabolic abnormalities associated with D-gal consumption for aging.


Subject(s)
Brain/drug effects , Citric Acid Cycle/drug effects , Creatine Kinase/metabolism , Galactose/administration & dosage , Malate Dehydrogenase/metabolism , Tricarboxylic Acids/metabolism , Administration, Oral , Animals , Brain/metabolism , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...