Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Neuro Oncol ; 25(11): 2058-2071, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37148198

ABSTRACT

BACKGROUND: Glioblastoma (GB) is incurable at present without established treatment options for recurrent disease. In this phase I first-in-human clinical trial we investigated safety and feasibility of adoptive transfer of clonal chimeric antigen receptor (CAR)-NK cells (NK-92/5.28.z) targeting HER2, which is expressed at elevated levels by a subset of glioblastomas. METHODS: Nine patients with recurrent HER2-positive GB were treated with single doses of 1 × 107, 3 × 107, or 1 × 108 irradiated CAR-NK cells injected into the margins of the surgical cavity during relapse surgery. Imaging at baseline and follow-up, peripheral blood lymphocyte phenotyping and analyses of the immune architecture by multiplex immunohistochemistry and spatial digital profiling were performed. RESULTS: There were no dose-limiting toxicities, and none of the patients developed a cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome. Five patients showed stable disease after relapse surgery and CAR-NK injection that lasted 7 to 37 weeks. Four patients had progressive disease. Pseudoprogression was found at injection sites in 2 patients, suggestive of a treatment-induced immune response. For all patients, median progression-free survival was 7 weeks, and median overall survival was 31 weeks. Furthermore, the level of CD8+ T-cell infiltration in recurrent tumor tissue prior to CAR-NK cell injection positively correlated with time to progression. CONCLUSIONS: Intracranial injection of HER2-targeted CAR-NK cells is feasible and safe in patients with recurrent GB. 1 × 108 NK-92/5.28.z cells was determined as the maximum feasible dose for a subsequent expansion cohort with repetitive local injections of CAR-NK cells.


Subject(s)
Glioblastoma , Receptors, Chimeric Antigen , Humans , Glioblastoma/pathology , Neoplasm Recurrence, Local/drug therapy , Killer Cells, Natural , Recurrence , Immunotherapy, Adoptive/methods
2.
Int J Mol Med ; 45(5): 1385-1396, 2020 May.
Article in English | MEDLINE | ID: mdl-32323755

ABSTRACT

Adenosine monophosphate (AMP)­activated protein kinase (AMPK) is a major cellular energy sensor that is activated by an increase in the AMP/adenosine triphosphate (ATP) ratio. This causes the initiation of adaptive cellular programs, leading to the inhibition of anabolic pathways and increasing ATP synthesis. AMPK indirectly inhibits mammalian target of rapamycin (mTOR) complex 1 (mTORC1), a serine/threonine kinase and central regulator of cell growth and metabolism, which integrates various growth inhibitory signals, such as the depletion of glucose, amino acids, ATP and oxygen. While neuroprotective approaches by definition focus on neurons, that are more sensitive under cell stress conditions, astrocytes play an important role in the cerebral energy homeostasis during ischemia. Therefore, the protection of astrocytic cells or other glial cells may contribute to the preservation of neuronal integrity and function. In the present study, it was thus hypothesized that a preventive induction of energy deprivation­activated signaling pathways via AMPK may protect astrocytes from hypoxia and glucose deprivation. Hypoxia­induced cell death was measured in a paradigm of hypoxia and partial glucose deprivation in vitro in the immortalized human astrocytic cell line SVG. Both the glycolysis inhibitor 2­deoxy­d­glucose (2DG) and the AMPK activator A­769662 induced the phosphorylation of AMPK, resulting in mTORC1 inhibition, as evidenced by a decrease in the phosphorylation of the target ribosomal protein S6 (RPS6). Treatment with both 2DG and A­769662 also decreased glucose consumption and lactate production. Furthermore, A­769662, but not 2DG induced an increase in oxygen consumption, possibly indicating a more efficient glucose utilization through oxidative phosphorylation. Hypoxia­induced cell death was profoundly reduced by treatment with 2DG or A­769662. On the whole, the findings of the present study demonstrate, that AMPK activation via 2DG or A­769662 protects astrocytes under hypoxic and glucose­depleted conditions.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Astrocytes/drug effects , Cell Death/drug effects , Hypoxia/drug therapy , Protective Agents/pharmacology , Astrocytes/metabolism , Biphenyl Compounds , Deoxyglucose/pharmacology , Glucose/metabolism , Glycolysis/drug effects , Humans , Hypoxia/metabolism , Neuroglia/drug effects , Neuroglia/metabolism , Neurons/drug effects , Neurons/metabolism , Oxidative Phosphorylation/drug effects , Pyrones/pharmacology , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Thiophenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL