Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(13): 5627-5634, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36961956

ABSTRACT

As an important raw material for the confectionery industry, the cocoa bean (Theobroma cacao L.) has to meet certain legal requirements in terms of food safety and maximum contaminant levels in order to enter the cocoa market. Understanding the enrichment and distribution of essential minerals but also toxic metals is of utmost importance for improving the nutritional quality of this economically important raw food material. We present three X-ray fluorescence (XRF) techniques for elemental bio-imaging of intact cocoa beans and one additional XRF technique for quantitative analysis of cocoa pellets. The interrelation of all the methods presented gives a detailed picture of the content and 3D-resolved distribution of elements in complete cocoa beans for the first time.


Subject(s)
Cacao , Fluorescence , X-Rays , Fermentation
2.
J Phys Chem B ; 120(45): 11619-11627, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27783515

ABSTRACT

The interaction of the central magnesium atom of chlorophyll a (Chl a) with the carbon and nitrogen backbone was investigated by magnesium K near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in fluorescence detection mode. A crude extract of Chl a was measured as a 1 × 10-2 mol/L ethanol solution (which represents an upper limit of concentration without aggregation) and as dried droplets. For the first time, the investigation of Mg bound to Chl a in a liquid environment by means of X-ray absorption spectroscopy is demonstrated. A pre-edge feature in the dissolved as well as in dried Chl a NEXFAS spectra has been identified as a characteristic transition originating from Mg in the Chl a molecule. This result is confirmed by theoretical DFT calculations leading to molecular orbitals (MO) which are mainly situated on the magnesium atom and nitrogen and carbon atoms from the pyrrole rings. The description is the first referring to the MO distribution with respect to the central Mg ion of Chl a and the surrounding atoms. On this basis, new approaches for the investigations of dynamic processes of molecules in solution and structure-function relationships of photosynthetic pigments and pigment-protein complexes in their native environment can be developed.


Subject(s)
Chlorophyll/analogs & derivatives , Ethanol/chemistry , Magnesium/chemistry , Chlorophyll/chemistry , Solutions , X-Ray Absorption Spectroscopy
3.
Appl Spectrosc ; 70(2): 279-88, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26903563

ABSTRACT

The traceability of measured quantities is an essential condition when linking process control parameters to guaranteed physical properties of a product. Using Raman spectroscopy as an analytical tool for monitoring the production of Cu(In1-xGax)Se2 thin-film solar cells, proper calibration with regard to chemical composition and lateral dimensions is a key prerequisite. This study shows how the multiple requirements of calibration in Raman microscopy might be addressed. The surface elemental composition as well as the integral elemental composition of the samples is traced back by reference-free X-ray fluorescence analysis. Reference Raman spectra are then generated for the relevant Cu(In1-xGax)Se2 related compounds. The lateral dimensions are calibrated with the help of a novel dimensional standard whose regular structures have been traced back to the International System of Units by metrological scanning force microscopy. On this basis, an approach for the quantitative determination of surface coverage values from lateral Raman mappings is developed together with a complete uncertainty budget. Raman and X-ray spectrometry have here been proven as complementary nondestructive methods combining surface sensitivity and in-depth information on elemental and species distribution for the reliable quality control of Cu(In1-xGax)Se2 absorbers and Cu(In1-xGax)3Se5 surface layer formation.

4.
Microsc Microanal ; 21(6): 1644-1648, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26365537

ABSTRACT

In a recent publication by Abou-Ras et al., various techniques for the analysis of elemental distribution in thin films were compared, using the example of a 2-µm thick Cu(In,Ga)Se2 thin film applied as an absorber material in a solar cell. The authors of this work found that similar relative Ga distributions perpendicular to the substrate across the Cu(In,Ga)Se2 thin film were determined by 18 different techniques, applied on samples from the same identical deposition run. Their spatial and depth resolutions, their measuring speeds, their availabilities, as well as their detection limits were discussed. The present work adds two further techniques to this comparison: laser-induced breakdown spectroscopy and grazing-incidence X-ray fluorescence analysis.

5.
Anal Chem ; 87(5): 2685-92, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25621905

ABSTRACT

The preparation of aminated monolayers with a controlled density of functional groups on silica surfaces through a simple vapor deposition process employing different ratios of two suitable monoalkoxysilanes, (3-aminopropyl)diisopropylethoxysilane (APDIPES) and (3-cyanopropyl)dimethylmethoxysilane (CPDMMS), and advances in the reliable quantification of such tailored surfaces are presented here. The one-step codeposition process was carried out with binary silane mixtures, rendering possible the control over a wide range of densities in a single step. In particular, APDIPES constitutes the functional silane and CPDMMS the inert component. The procedure requires only small amounts of silanes, several ratios can be produced in a single batch, the deposition can be carried out within a few hours and a dry atmosphere can easily be employed, limiting self-condensation of the silanes. Characterization of the ratio of silanes actually bound to the surface can then be performed in a facile manner through contact angle measurements using the Cassie equation. The reliable estimation of the number of surface functional groups was approached with a dual-mode BODIPY-type fluorescence label, which allows quantification by fluorescence and XPS on one and the same sample. We found that fluorescence and XPS signals correlate over at least 1 order of magnitude, allowing for a direct linking of quantitative fluorescence analysis to XPS quantification. Employment of synchrotron-based methods (XPS; reference-free total reflection X-ray fluorescence, TXRF) made the traceable quantification of surface functional groups possible, providing an absolute reference for quantitative fluorescence measurements through a traceable measurement chain.


Subject(s)
Cross-Linking Reagents/chemistry , Photoelectron Spectroscopy/methods , Silanes/analysis , Silanes/chemistry , Fluorescence , Microscopy, Atomic Force , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...