Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 7(7): 3103-3113, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34100582

ABSTRACT

Recent efforts have demonstrated that the morphology of ceramics can be manipulated to control both their deformation mechanism and mechanical performance. However, precise control of the ceramic nanostructure is still difficult to achieve. Biotemplating, leading to biomorphic materials, provides a facile route to manipulate the nanostructure of the resulting materials, and the use of melanin as a coating provides a new route to biotemplated materials. Melanin is underutilized for structural materials partly due to the cost of procuring it from natural sources and the inability to control the shape and sizes of melanin particles. Taking a combined synthetic biology and chemical synthesis approach, we report the melanization of Escherichia coli and its subsequent silanization and functionalization with preceramic polymers to make novel biomorphic silicon-based ceramic materials. Graft-to and graft-from reactions were used to append preceramic polymers to the melanin, followed by pyrolysis under argon. Samples were analyzed by FTIR, XRD, XPS, and TEM and found to retain the shape and size of the original cells with high fidelity. The homogeneity of coverage and yield of the resulting ceramic materials depended on the type of grafting reaction. This work provides a promising proof-of-concept that bacterial-templated ceramics can be readily made and opens a host of possibilities for further studies and applications.


Subject(s)
Melanins , Polymers , Ceramics , Silicon
2.
ACS Macro Lett ; 9(4): 565-570, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-35648487

ABSTRACT

Lamellar block copolymers based on polymeric ionic liquids (PILs) show promise as electrolytes in electrochemical devices. However, these systems often display structural anisotropy that depresses the through-film ionic conductivity. This work hypothesizes that structural anisotropy is a consequence of surface-induced ordering, where preferential adsorption of one block at the electrode drives a short-range stacking of the lamellae. This point was examined with lamellar diblock copolymers of polystyrene (PS) and poly(1-(2-acryloyloxyethyl)-3-butylimidazolium bis(trifluoromethanesulfonyl)imide) (PIL). The bulk PS-PIL structure was comprised of randomly oriented lamellar grains. However, in thin PS-PIL films (100-400 nm), the lamellae were stacked normal to the plane of the film, and islands/holes were observed when the as-prepared film thickness was incommensurate with the natural lamellar periodicity. Both of these attributes are well-known consequences of preferential wetting at surfaces. The ionic conductivity of thick PS-PIL films (50-100 µm) was approximately 20× higher in the in-plane direction than in the through-plane direction, consistent with a mixed structure comprised of randomly oriented lamellae throughout the interior of the film and highly oriented lamellae at the electrode surface. Therefore, to fully optimize the performance of a block copolymer electrolyte, it is important to consider the effects of surface interactions on the ordering of domains.

3.
Langmuir ; 34(18): 5204-5213, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29693402

ABSTRACT

Generating physical or chemical gradients in thin-film scaffolds is an efficient approach for screening and optimizing an interfacial structure or chemical functionality to create tailored surfaces that are useful because of their wetting, antifouling, or barrier properties. The relationship between the structure of poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) brushes created by the preferential assembly of poly(glycidyl methacrylate)- block-PVDMA diblock copolymers and the ability to chemically modify the PVDMA chains in situ to create a gradient in functionality are examined to investigate how the extent of functionalization affects the interfacial and surface properties. The introduction of a chemical gradient by controlled immersion allows reactive modification to generate position-dependent properties that are assessed by ellipsometry, attenuated total reflectance-Fourier transform infrared spectroscopy, contact angle measurements, and atomic force microscopy imaging. After functionalization of the azlactone rings with n-alkyl amines, ellipsometry confirms an increase in thickness and contact angle measurements support an increase in hydrophobicity along the substrate. These results are used to establish relationships between layer thickness, reaction time, position, and the extent of functionalization and demonstrate that gradual immersion into the functionalizing solution results in a linear change in chemical functionality along the surface. These findings broadly support efforts to produce tailored surfaces by in situ chemical modification, having application as tailored membranes, protein resistant surfaces, or sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...