Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 50(42): 9135-47, 2011 Oct 25.
Article in English | MEDLINE | ID: mdl-21919534

ABSTRACT

Mycobacterium tuberculosis, the causative agent of tuberculosis, is unique among bacterial pathogens in that it contains a wide array of complex lipids and lipoglycans on its cell wall. Among them, the sulfated glycolipid, termed the sulfolipid, is thought to mediate specific host-pathogen interactions during infection. Sulfolipids (SLs), including sulfolipid I (SL-I) and sulfolipid II (SL-II), are 2,3,6,6'-tetraacyltrehalose 2'-sulfates. SL-I was identified as a family of homologous 2-palmitoyl(stearoyl)-3-phthioceranoyl-6,6'-bis(hydroxyphthioceranoy1)trehalose 2'-sulfates and was believed to be the principal sulfolipid of M. tuberculosis strain H37Rv. We cultured and extracted sulfolipids using various conditions, including those originally described, and employed high-resolution multiple-stage linear ion-trap mass spectrometry with electrospray ionization to characterize the structure of the principal SL. We revealed that SL-II, a family of homologous 2-stearoyl(palmitoyl)-3,6,6'-tris(hydroxyphthioceranoy1)trehalose 2'-sulfates, rather than SL-I is the principal sulfolipid class. We identified a great number of isomers resulting from permutation of the various hydroxyphthioceranoyl substituents at positions 6 and 6' of the trehalose backbone for each of the SL-II species in the entire family. We redefined the structure of this important lipid family that was misassigned using the traditional methods 40 years ago.


Subject(s)
Lipids/chemistry , Lipids/classification , Mycobacterium tuberculosis/chemistry , Carbohydrate Sequence , Culture Media , Lipids/isolation & purification , Molecular Sequence Data , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/pathogenicity , Spectrometry, Mass, Electrospray Ionization , Stereoisomerism , Tandem Mass Spectrometry
2.
PLoS Genet ; 6(4): e1000909, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20419149

ABSTRACT

Lavender Foal Syndrome (LFS) is a lethal inherited disease of horses with a suspected autosomal recessive mode of inheritance. LFS has been primarily diagnosed in a subgroup of the Arabian breed, the Egyptian Arabian horse. The condition is characterized by multiple neurological abnormalities and a dilute coat color. Candidate genes based on comparative phenotypes in mice and humans include the ras-associated protein RAB27a (RAB27A) and myosin Va (MYO5A). Here we report mapping of the locus responsible for LFS using a small set of 36 horses segregating for LFS. These horses were genotyped using a newly available single nucleotide polymorphism (SNP) chip containing 56,402 discriminatory elements. The whole genome scan identified an associated region containing these two functional candidate genes. Exon sequencing of the MYO5A gene from an affected foal revealed a single base deletion in exon 30 that changes the reading frame and introduces a premature stop codon. A PCR-based Restriction Fragment Length Polymorphism (PCR-RFLP) assay was designed and used to investigate the frequency of the mutant gene. All affected horses tested were homozygous for this mutation. Heterozygous carriers were detected in high frequency in families segregating for this trait, and the frequency of carriers in unrelated Egyptian Arabians was 10.3%. The mapping and discovery of the LFS mutation represents the first successful use of whole-genome SNP scanning in the horse for any trait. The RFLP assay can be used to assist breeders in avoiding carrier-to-carrier matings and thus in preventing the birth of affected foals.


Subject(s)
Epilepsy/veterinary , Genome , Horse Diseases/genetics , Horses/genetics , Myosins/genetics , Polymorphism, Single Nucleotide , Animals , Base Sequence , Epilepsy/genetics , Genotype , Molecular Sequence Data , Syndrome
3.
J Immunol ; 183(3): 1997-2007, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19596998

ABSTRACT

Mycobacterium abscessus causes disease in patients with structural abnormalities of the lung, and it is an emerging pathogen in patients with cystic fibrosis. Colonization of the airways by nontuberculous mycobacteria is a harbinger of invasive lung disease. Colonization is facilitated by biofilm formation, with M. abscessus glycopeptidolipids playing an important role. M. abscessus can transition between a noninvasive, biofilm-forming, smooth colony phenotype that expresses glycopeptidolipid, and an invasive rough colony phenotype that expresses minimal amounts of glycopeptidolipid and is unable to form biofilms. The ability of this pathogen to transition between these phenotypes may have particular relevance to lung infection in cystic fibrosis patients since the altered pulmonary physiology of these patients makes them particularly susceptible to colonization by biofilm-forming bacteria. In this study we demonstrate that rough variants of M. abscessus stimulate the human macrophage innate immune response through TLR2, while smooth variants do not. Temperature-dependent loss or physical removal of glycopeptidolipid from the cell wall of one of the smooth variants leads to TLR2 stimulation. This response is stimulated in part through phosphatidyl-myo-inositol mannosides that are present in the cell wall of both rough and smooth variants. Mannose-binding lectins bind to rough variants, but lectin binding to an isogenic smooth variant is markedly reduced. This suggests that glycopeptidolipid in the outermost portion of the M. abscessus cell wall masks underlying cell wall lipids involved in stimulating the innate immune response, thereby facilitating colonization. Conversely spontaneous "unmasking" of cell wall lipids may promote airway inflammation.


Subject(s)
Glycolipids/physiology , Glycopeptides/physiology , Macrophages/metabolism , Mycobacterium/pathogenicity , Toll-Like Receptor 2/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Biofilms , Cell Wall/chemistry , Cystic Fibrosis/immunology , Humans , Immunity, Innate , Mycobacterium/cytology , Mycobacterium Infections , Phosphatidylinositols
SELECTION OF CITATIONS
SEARCH DETAIL
...