Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Cell Physiol ; 239(4): e31204, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38419397

ABSTRACT

Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are protein- and lipid-enriched hubs that mediate interorganellar communication by contributing to the dynamic transfer of Ca2+, lipid, and other metabolites between these organelles. Defective MERCs are associated with cellular oxidative stress, neurodegenerative disease, and cardiac and skeletal muscle pathology via mechanisms that are poorly understood. We previously demonstrated that skeletal muscle-specific knockdown (KD) of the mitochondrial fusion mediator optic atrophy 1 (OPA1) induced ER stress and correlated with an induction of Mitofusin-2, a known MERC protein. In the present study, we tested the hypothesis that Opa1 downregulation in skeletal muscle cells alters MERC formation by evaluating multiple myocyte systems, including from mice and Drosophila, and in primary myotubes. Our results revealed that OPA1 deficiency induced tighter and more frequent MERCs in concert with a greater abundance of MERC proteins involved in calcium exchange. Additionally, loss of OPA1 increased the expression of activating transcription factor 4 (ATF4), an integrated stress response (ISR) pathway effector. Reducing Atf4 expression prevented the OPA1-loss-induced tightening of MERC structures. OPA1 reduction was associated with decreased mitochondrial and sarcoplasmic reticulum, a specialized form of ER, calcium, which was reversed following ATF4 repression. These data suggest that mitochondrial stress, induced by OPA1 deficiency, regulates skeletal muscle MERC formation in an ATF4-dependent manner.


Subject(s)
Activating Transcription Factor 4 , Neurodegenerative Diseases , Animals , Mice , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Lipids , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Neurodegenerative Diseases/pathology , Male , Mice, Inbred C57BL , Cells, Cultured , GTP Phosphohydrolases/metabolism
2.
Cardiovasc Res ; 120(6): 596-611, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38198753

ABSTRACT

AIMS: A mechanistic link between depression and risk of arrhythmias could be attributed to altered catecholamine metabolism in the heart. Monoamine oxidase-A (MAO-A), a key enzyme involved in catecholamine metabolism and longstanding antidepressant target, is highly expressed in the myocardium. The present study aimed to elucidate the functional significance and underlying mechanisms of cardiac MAO-A in arrhythmogenesis. METHODS AND RESULTS: Analysis of the TriNetX database revealed that depressed patients treated with MAO inhibitors had a lower risk of arrhythmias compared with those treated with selective serotonin reuptake inhibitors. This effect was phenocopied in mice with cardiomyocyte-specific MAO-A deficiency (cMAO-Adef), which showed a significant reduction in both incidence and duration of catecholamine stress-induced ventricular tachycardia compared with wild-type mice. Additionally, cMAO-Adef cardiomyocytes exhibited altered Ca2+ handling under catecholamine stimulation, with increased diastolic Ca2+ reuptake, reduced diastolic Ca2+ leak, and diminished systolic Ca2+ release. Mechanistically, cMAO-Adef hearts had reduced catecholamine levels under sympathetic stress, along with reduced levels of reactive oxygen species and protein carbonylation, leading to decreased oxidation of Type II PKA and CaMKII. These changes potentiated phospholamban (PLB) phosphorylation, thereby enhancing diastolic Ca2+ reuptake, while reducing ryanodine receptor 2 (RyR2) phosphorylation to decrease diastolic Ca2+ leak. Consequently, cMAO-Adef hearts exhibited lower diastolic Ca2+ levels and fewer arrhythmogenic Ca2+ waves during sympathetic overstimulation. CONCLUSION: Cardiac MAO-A inhibition exerts an anti-arrhythmic effect by enhancing diastolic Ca2+ handling under catecholamine stress.


Subject(s)
Calcium , Catecholamines , Monoamine Oxidase , Tachycardia, Ventricular , Animals , Female , Humans , Male , Mice , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Catecholamines/metabolism , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Diastole/drug effects , Disease Models, Animal , Heart Rate/drug effects , Mice, Inbred C57BL , Mice, Knockout , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phosphorylation , Reactive Oxygen Species/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Tachycardia, Ventricular/enzymology , Tachycardia, Ventricular/physiopathology
4.
Cells ; 11(1)2021 12 27.
Article in English | MEDLINE | ID: mdl-35011629

ABSTRACT

High-resolution 3D images of organelles are of paramount importance in cellular biology. Although light microscopy and transmission electron microscopy (TEM) have provided the standard for imaging cellular structures, they cannot provide 3D images. However, recent technological advances such as serial block-face scanning electron microscopy (SBF-SEM) and focused ion beam scanning electron microscopy (FIB-SEM) provide the tools to create 3D images for the ultrastructural analysis of organelles. Here, we describe a standardized protocol using the visualization software, Amira, to quantify organelle morphologies in 3D, thereby providing accurate and reproducible measurements of these cellular substructures. We demonstrate applications of SBF-SEM and Amira to quantify mitochondria and endoplasmic reticulum (ER) structures.


Subject(s)
Algorithms , Imaging, Three-Dimensional , Microscopy, Electron, Scanning , Organelles/ultrastructure , Animals , Drosophila , Endoplasmic Reticulum , GTP Phosphohydrolases/deficiency , GTP Phosphohydrolases/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/ultrastructure , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/ultrastructure , Muscle, Skeletal/ultrastructure
5.
Mol Ther ; 24(4): 779-87, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26732878

ABSTRACT

Inhibition of vascular smooth muscle cell (VSMC) proliferation by drug eluting stents has markedly reduced intimal hyperplasia and subsequent in-stent restenosis. However, the effects of antiproliferative drugs on endothelial cells (EC) contribute to delayed re-endothelialization and late stent thrombosis. Cell-targeted therapies to inhibit VSMC remodeling while maintaining EC health are necessary to allow vascular healing while preventing restenosis. We describe an RNA aptamer (Apt 14) that functions as a smart drug by preferentially targeting VSMCs as compared to ECs and other myocytes. Furthermore, Apt 14 inhibits phosphatidylinositol 3-kinase/protein kinase-B (PI3K/Akt) and VSMC migration in response to multiple agonists by a mechanism that involves inhibition of platelet-derived growth factor receptor (PDGFR)-ß phosphorylation. In a murine model of carotid injury, treatment of vessels with Apt 14 reduces neointimal formation to levels similar to those observed with paclitaxel. Importantly, we confirm that Apt 14 cross-reacts with rodent and human VSMCs, exhibits a half-life of ~300 hours in human serum, and does not elicit immune activation of human peripheral blood mononuclear cells. We describe a VSMC-targeted RNA aptamer that blocks cell migration and inhibits intimal formation. These findings provide the foundation for the translation of cell-targeted RNA therapeutics to vascular disease.


Subject(s)
Aptamers, Nucleotide/pharmacology , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/drug effects , Neointima/therapy , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Gene Expression Regulation/drug effects , Half-Life , Humans , Mice , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/cytology , Neointima/metabolism , Phosphorylation , Rats
6.
EMBO Rep ; 15(11): 1109-12, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25319713
7.
Circ Res ; 115(11): 911-8, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25228390

ABSTRACT

RATIONALE: Activation of Nox1 initiates redox-dependent signaling events crucial in the pathogenesis of vascular disease. Selective targeting of Nox1 is an attractive potential therapy, but requires a better understanding of the molecular modifications controlling its activation. OBJECTIVE: To determine whether posttranslational modifications of Nox1 regulate its activity in vascular cells. METHODS AND RESULTS: We first found evidence that Nox1 is phosphorylated in multiple models of vascular disease. Next, studies using mass spectroscopy and a pharmacological inhibitor demonstrated that protein kinase C-beta1 mediates phosphorylation of Nox1 in response to tumor necrosis factor-α. siRNA-mediated silencing of protein kinase C-beta1 abolished tumor necrosis factor-α-mediated reactive oxygen species production and vascular smooth muscle cell migration. Site-directed mutagenesis and isothermal titration calorimetry indicated that protein kinase C-beta1 phosphorylates Nox1 at threonine 429. Moreover, Nox1 threonine 429 phosphorylation facilitated the association of Nox1 with the NoxA1 activation domain and was necessary for NADPH oxidase complex assembly, reactive oxygen species production, and vascular smooth muscle cell migration. CONCLUSIONS: We conclude that protein kinase C-beta1 phosphorylation of threonine 429 regulates activation of Nox1 NADPH oxidase.


Subject(s)
NADH, NADPH Oxidoreductases/metabolism , Proteins/metabolism , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , Animals , Aorta/cytology , Binding Sites , Cell Movement , Cells, Cultured , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Mutation , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/genetics , NADPH Oxidase 1 , Phosphorylation , Protein Binding , Protein Kinase C beta/metabolism , Protein Processing, Post-Translational , Proteins/chemistry , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
Cardiovasc Res ; 102(1): 79-87, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24501329

ABSTRACT

AIMS: Ischaemic preconditioning (IPC) is an adaptive mechanism that renders the myocardium resistant to injury from subsequent hypoxia. Although reactive oxygen species (ROS) contribute to both the early and late phases of IPC, their enzymatic source and associated signalling events have not yet been understood completely. Our objective was to investigate the role of the Nox1 NADPH oxidase in cardioprotection provided by IPC. METHODS AND RESULTS: Wild-type (WT) and Nox1-deficient mice were treated with three cycles of brief coronary occlusion and reperfusion, followed by prolonged occlusion either immediately (early IPC) or after 24 h (late IPC). Nox1 deficiency had no impact on the cardioprotection afforded by early IPC. In contrast, deficiency of Nox1 during late IPC resulted in a larger infarct size, cardiac remodelling, and increased myocardial apoptosis compared with WT hearts. Furthermore, expression of Nox1 in WT hearts increased in response to late IPC. Deficiency of Nox1 abrogated late IPC-mediated activation of cardiac nuclear factor-κB (NF-κB) and induction of tumour necrosis factor-α (TNF-α) in the heart and circulation. Finally, knockdown of Nox1 in cultured cardiomyocytes prevented TNF-α induction of NF-κB and the protective effect of IPC on hypoxia-induced apoptosis. CONCLUSIONS: Our data identify a critical role for Nox1 in late IPC and define a previously unrecognized link between TNF-α and NF-κB in mediating tolerance to myocardial injury. These findings have clinical significance considering the emergence of Nox1 inhibitors for the treatment of cardiovascular disease.


Subject(s)
Ischemic Preconditioning, Myocardial , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/metabolism , NADH, NADPH Oxidoreductases/metabolism , Animals , Disease Models, Animal , Ischemic Preconditioning, Myocardial/methods , Male , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/metabolism , NADPH Oxidase 1 , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism
9.
Int J Mol Sci ; 14(8): 17017-28, 2013 Aug 19.
Article in English | MEDLINE | ID: mdl-23965970

ABSTRACT

Of the multiple sources of reactive oxygen species (ROS) in the blood vessel, NADPH oxidases are the primary source. Whereas several studies have implicated NADPH oxidases in the initiation of atherosclerosis, their roles in disease progression are incompletely understood. Our objective was to determine the potential clinical relevance of inhibiting NADPH oxidase in established atherosclerosis. Using a hypercholesteremic murine model of atherosclerosis (ApoE-/-/LDLR-/- (AS) mice on normal chow diet), we first established a time-dependent relationship between superoxide levels and lesion size in AS mice. Next, we identified NADPH oxidase as the primary source of ROS in atherosclerotic lesions. Treatment of aortic segments from AS mice with apocynin, which interferes with NADPH oxidase activation in part by preventing translocation of the subunit p47phox, significantly reduced superoxide levels. Moreover, addition of apocynin to the drinking water of AS mice produced a decrease in lesion size as compared to untreated AS mice, with the effect most pronounced in the thoracoabdominal aorta but absent from the aortic arch. Granulocyte function in AS+apocynin mice was suppressed, confirming efficacy of apocynin treatment. We conclude that apocynin attenuates the progression of atherosclerosis in hypercholesterolemic mice, potentially by its ability to inhibit generation of superoxide by NADPH oxidase.


Subject(s)
Acetophenones/pharmacology , Atherosclerosis/drug therapy , NADPH Oxidases/metabolism , Animals , Aorta, Abdominal/drug effects , Aorta, Abdominal/enzymology , Aorta, Abdominal/pathology , Atherosclerosis/enzymology , Atherosclerosis/pathology , Female , Hypercholesterolemia/enzymology , Leukocytes/drug effects , Leukocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidases/antagonists & inhibitors , Protein Transport , Respiratory Burst/drug effects , Superoxides/metabolism
10.
Cardiovasc Ther ; 31(3): 125-37, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22280098

ABSTRACT

Over 40 years ago, NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 2 (Nox2) was discovered in phagocytes and found to be essential in innate immunity. More than 20 years passed before additional Nox isoforms were discovered; and since then, studies have revealed that several of these isoforms (Nox1, Nox2, Nox4, and Nox5) are found in human cardiac and vascular cells and contribute to the pathogenesis of cardiovascular diseases (CVDs). Recently, major efforts have focused on identifying inhibitors capable of ameliorating Nox-mediated CVD. In this review, we briefly discuss the role of each Nox isoform in CVD, identify steps in Nox signaling that will serve as potential targets for the design of therapeutics, and highlight innovative strategies likely to yield effective Nox inhibitors within the next decade.


Subject(s)
Cardiovascular Diseases/drug therapy , NADPH Oxidases/antagonists & inhibitors , Cardiovascular Diseases/enzymology , Electron Transport , Humans , NADPH Oxidases/chemistry , NADPH Oxidases/physiology , Oxidative Stress , Reactive Oxygen Species/metabolism , SELEX Aptamer Technique , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...