Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Biomed Opt ; 29(6): 066003, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38745983

ABSTRACT

Significance: Necrotizing soft-tissue infections (NSTIs) are life-threatening infections with a cumulative case fatality rate of 21%. The initial presentation of an NSTI is non-specific, frequently leading to misdiagnosis and delays in care. No current strategies yield an accurate, real-time diagnosis of an NSTI. Aim: A first-in-kind, observational, clinical pilot study tested the hypothesis that measurable fluorescence signal voids occur in NSTI-affected tissues following intravenous administration and imaging of perfusion-based indocyanine green (ICG) fluorescence. This hypothesis is based on the established knowledge that NSTI is associated with local microvascular thrombosis. Approach: Adult patients presenting to the Emergency Department of a tertiary care medical center at high risk for NSTI were prospectively enrolled and imaged with a commercial fluorescence imager. Single-frame fluorescence snapshot and first-pass perfusion kinetic parameters-ingress slope (IS), time-to-peak (TTP) intensity, and maximum fluorescence intensity (IMAX)-were quantified using a dynamic contrast-enhanced fluorescence imaging technique. Clinical variables (comorbidities, blood laboratory values), fluorescence parameters, and fluorescence signal-to-background ratios (SBRs) were compared to final infection diagnosis. Results: Fourteen patients were enrolled and imaged (six NSTI, six cellulitis, one diabetes mellitus-associated gangrene, and one osteomyelitis). Clinical variables demonstrated no statistically significant differences between NSTI and non-NSTI patient groups (p-value≥0.22). All NSTI cases exhibited prominent fluorescence signal voids in affected tissues, including tissue features not visible to the naked eye. All cellulitis cases exhibited a hyperemic response with increased fluorescence and no distinct signal voids. Median lesion-to-background tissue SBRs based on snapshot, IS, TTP, and IMAX parameter maps ranged from 3.2 to 9.1, 2.2 to 33.8, 1.0 to 7.5, and 1.5 to 12.7, respectively, for the NSTI patient group. All fluorescence parameters except TTP demonstrated statistically significant differences between NSTI and cellulitis patient groups (p-value<0.05). Conclusions: Real-time, accurate discrimination of NSTIs compared with non-necrotizing infections may be possible with perfusion-based ICG fluorescence imaging.


Subject(s)
Indocyanine Green , Optical Imaging , Soft Tissue Infections , Humans , Indocyanine Green/chemistry , Female , Male , Soft Tissue Infections/diagnostic imaging , Middle Aged , Optical Imaging/methods , Pilot Projects , Aged , Prospective Studies , Adult , Necrosis/diagnostic imaging
2.
J Biomed Opt ; 29(1): 016004, 2024 01.
Article in English | MEDLINE | ID: mdl-38235320

ABSTRACT

Significance: Fluorescence guidance is used clinically by surgeons to visualize anatomical and/or physiological phenomena in the surgical field that are difficult or impossible to detect by the naked eye. Such phenomena include tissue perfusion or molecular phenotypic information about the disease being resected. Conventional fluorescence-guided surgery relies on long, microsecond scale laser pulses to excite fluorescent probes. However, this technique only provides two-dimensional information; crucial depth information, such as the location of malignancy below the tissue surface, is not provided. Aim: We developed a depth sensing imaging technique using light detection and ranging (LiDAR) time-of-flight (TOF) technology to sense the depth of target tissue while overcoming the influence of tissue optical properties and fluorescent probe concentration. Approach: The technology is based on a large-format (512×512 pixel), binary, gated, single-photon avalanche diode (SPAD) sensor with an 18 ps time-gate step, synchronized with a picosecond pulsed laser. The fast response of the sensor was developed and tested for its ability to quantify fluorescent inclusions at depth and optical properties in tissue-like phantoms through analytical model fitting of the fast temporal remission data. Results: After calibration and algorithmic extraction of the data, the SPAD LiDAR technique allowed for sub-mm resolution depth sensing of fluorescent inclusions embedded in tissue-like phantoms, up to a maximum of 5 mm in depth. The approach provides robust depth sensing even in the presence of variable tissue optical properties and separates the effects of fluorescence depth from absorption and scattering variations. Conclusions: LiDAR TOF fluorescence imaging using an SPAD camera provides both fluorescence intensity images and the temporal profile of fluorescence, which can be used to determine the depth at which the signal is emitted over a wide field of view. The proposed tool enables fluorescence imaging at a higher depth in tissue and with higher spatial precision than standard, steady-state fluorescence imaging tools, such as intensity-based near-infrared fluorescence imaging, optical coherence tomography, Raman spectroscopy, or confocal microscopy. Integration of this technique into a standard surgical tool could enable rapid, more accurate estimation of resection boundaries, thereby improving the surgeon's efficacy and efficiency, and ultimately improving patient outcomes.


Subject(s)
Neoplasms , Humans , Neoplasms/diagnostic imaging , Phantoms, Imaging , Optical Imaging , Spectrum Analysis, Raman/methods , Fluorescent Dyes
3.
Mol Imaging Biol ; 26(2): 272-283, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38151580

ABSTRACT

PURPOSE: ABY-029, an epidermal growth factor receptor (EGFR)-targeted, synthetic Affibody peptide labeled with a near-infrared fluorophore, is under investigation for fluorescence-guided surgery of sarcomas. To date, studies using ABY-029 have occurred in tumors naïve to chemotherapy (CTx) and radiation therapy (RTx), although these neoadjuvant therapies are frequently used for sarcoma treatment in humans. The goal of this study was to evaluate the impact of CTx and RTx on tumor EGFR expression and ABY-029 fluorescence of human soft-tissue sarcoma xenografts in a murine model. PROCEDURES: Immunodeficient mice (n = 98) were divided into five sarcoma xenograft groups and three treatment groups - CTx only, RTx only, and CTx followed by RTx, plus controls. Four hours post-injection of ABY-029, animals were sacrificed followed by immediate fluorescence imaging of ex vivo adipose, muscle, nerve, and tumor tissues. Histological hematoxylin and eosin staining confirmed tumor type, and immunohistochemistry staining determined EGFR, cluster of differentiation 31 (CD31), and smooth muscle actin (SMA) expression levels. Correlation analysis (Pearson's correlation coefficients, r) and linear regression (unstandardized coefficient estimates, B) were used to determine statistical relationships in molecular expression and tissue fluorescence between xenografts and treatment groups. RESULTS: Neoadjuvant therapies had no broad impact on EGFR expression (|B|≤ 7.0, p ≥ 0.4) or on mean tissue fluorescence (any tissue type, (|B|≤ 2329.0, p ≥ 0.1). Mean tumor fluorescence was significantly related to EGFR expression (r = 0.26, p = 0.01), as expected. CONCLUSION: Results suggest that ABY-029 as an EGFR-targeted, fluorescent probe is not negatively impacted by neoadjuvant soft-tissue sarcoma therapies, although validation in humans is required.


Subject(s)
Neoadjuvant Therapy , Sarcoma , Humans , Mice , Animals , Disease Models, Animal , ErbB Receptors/metabolism , Fluorescent Dyes
4.
Article in English | MEDLINE | ID: mdl-37056956

ABSTRACT

Following orthopaedic trauma, bone devitalization is a critical determinant of complications such as infection or nonunion. Intraoperative assessment of bone perfusion has thus far been limited. Furthermore, treatment failure for infected fractures is unreasonably high, owing to the propensity of biofilm to form and become entrenched in poorly vascularized bone. Fluorescence-guided surgery and molecularly-guided surgery could be used to evaluate the viability of bone and soft tissue and detect the presence of planktonic and biofilm-forming bacteria. This proceedings paper discusses the motivation behind developing this technology and our most recent preclinical and clinical results.

5.
Article in English | MEDLINE | ID: mdl-37009433

ABSTRACT

We have co-developed a first-in-kind model of fluorophore testing in freshly amputated human limbs. Ex vivo human tissue provides a unique opportunity for the testing of pre-clinical fluorescent agents, collection of imaging data, and histopathologic examination in human tissue prior to performing in vivo experiments. Existing pre-clinical fluorescent agent studies rely primarily on animal models, which do not directly predict fluorophore performance in humans and can result in wasted resources and time if an agent proves ineffective in early human trials. Because fluorophores have no desired therapeutic effect, their clinical utility is based solely on their safety and ability to highlight tissues of interest. Advancing to human trials even via the FDA's phase 0/microdose pathway still requires substantial resources, single-species pharmacokinetic testing, and toxicity testing. In a recently concluded study using amputated human lower limbs, we were able to test successfully a nerve-specific fluorophore in pre-clinical development. This study used systemic administration via vascular cannulization and a cardiac perfusion pump. We envision that this model may assist with early lead agent testing selection for fluorophores with various targets and mechanisms.

6.
Article in English | MEDLINE | ID: mdl-37034555

ABSTRACT

Necrotizing soft-tissue infections (NSTIs) are aggressive and deadly. Immediate surgical debridement is standard-of-care, but patients often present with non-specific symptoms, thereby delaying treatment. Because NSTIs cause microvascular thrombosis, we hypothesized that perfusion imaging using indocyanine green (ICG) would show diminished fluorescence signal in NSTI-affected tissues, particularly compared to non-necrotizing, superficial infections. Through a first-in-kind clinical study, we performed first-pass ICG fluorescence perfusion imaging of patients with suspected NSTIs. Early results support our hypothesis that ICG signal voids occur in NSTI-affected tissues and that dynamic contrast-enhanced fluorescence parameters reveal tissue kinetics that may be related to disease progression and extent.

7.
Article in English | MEDLINE | ID: mdl-37034554

ABSTRACT

Accelerating innovation in the space of fluorescence imaging for surgical applications has increased interest in safely and expediently advancing these technologies to clinic through Food and Drug Administration-(FDA-) compliant trials. Conventional metrics for early phase trials include drug safety, tolerability, dosing, and pharmacokinetics. Most procedural imaging technologies rely on administration of an exogenous fluorophore and concurrent use of an imaging system; both of which must receive FDA approval to proceed to clinic. Because fluorophores are classified as medical imaging agents, criteria for establishing dose are different, and arguably more complicated, than therapeutic drugs. Since no therapeutic effect is desired, medical imaging agents are ideally administered at the lowest dose that achieves adequate target differentiation. Because procedural imaging modalities are intended to enhance and/or ease proceduralists' identification or assessment of tissues, beneficial effects of these technologies may manifest in the form of qualitative endpoints such as: 1) confidence; 2) decision-making; and 3) satisfaction with the specified procedure. Due to the rapid expansion of medical imaging technologies, we believe that our field requires standardized criteria to evaluate existing and emerging technologies objectively so that both quantitative and qualitative aspects of their use may be measured and useful comparisons to assess their relative value may occur. Here, we present a 15-item consensus-based survey instrument to assess the utility of novel imaging technologies from the proceduralist's standpoint.

8.
Ann Surg Oncol ; 30(7): 4097-4108, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37041429

ABSTRACT

BACKGROUND: Breast-conserving surgery (BCS) is an integral component of early-stage breast cancer treatment, but costly reexcision procedures are common due to the high prevalence of cancer-positive margins on primary resections. A need exists to develop and evaluate improved methods of margin assessment to detect positive margins intraoperatively. METHODS: A prospective trial was conducted through which micro-computed tomography (micro-CT) with radiological interpretation by three independent readers was evaluated for BCS margin assessment. Results were compared to standard-of-care intraoperative margin assessment (i.e., specimen palpation and radiography [abbreviated SIA]) for detecting cancer-positive margins. RESULTS: Six hundred margins from 100 patients were analyzed. Twenty-one margins in 14 patients were pathologically positive. On analysis at the specimen-level, SIA yielded a sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 42.9%, 76.7%, 23.1%, and 89.2%, respectively. SIA correctly identified six of 14 margin-positive cases with a 23.5% false positive rate (FPR). Micro-CT readers achieved sensitivity, specificity, PPV, and NPV ranges of 35.7-50.0%, 55.8-68.6%, 15.6-15.8%, and 86.8-87.3%, respectively. Micro-CT readers correctly identified five to seven of 14 margin-positive cases with an FPR range of 31.4-44.2%. If micro-CT scanning had been combined with SIA, up to three additional margin-positive specimens would have been identified. DISCUSSION: Micro-CT identified a similar proportion of margin-positive cases as standard specimen palpation and radiography, but due to difficulty distinguishing between radiodense fibroglandular tissue and cancer, resulted in a higher proportion of false positive margin assessments.


Subject(s)
Breast Neoplasms , Mastectomy, Segmental , Humans , Female , Mastectomy, Segmental/methods , X-Ray Microtomography/methods , Prospective Studies , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Radiography , Margins of Excision
10.
Front Med Technol ; 5: 1009638, 2023.
Article in English | MEDLINE | ID: mdl-36875185

ABSTRACT

Background: Fluorescence molecular imaging using ABY-029, an epidermal growth factor receptor (EGFR)-targeted, synthetic Affibody peptide labeled with a near-infrared fluorophore, is under investigation for surgical guidance during head and neck squamous cell carcinoma (HNSCC) resection. However, tumor-to-normal tissue contrast is confounded by intrinsic physiological limitations of heterogeneous EGFR expression and non-specific agent uptake. Objective: In this preliminary study, radiomic analysis was applied to optical ABY-029 fluorescence image data for HNSCC tissue classification through an approach termed "optomics." Optomics was employed to improve tumor identification by leveraging textural pattern differences in EGFR expression conveyed by fluorescence. The study objective was to compare the performance of conventional fluorescence intensity thresholding and optomics for binary classification of malignant vs. non-malignant HNSCC tissues. Materials and Methods: Fluorescence image data collected through a Phase 0 clinical trial of ABY-029 involved a total of 20,073 sub-image patches (size of 1.8 × 1.8 mm2) extracted from 24 bread-loafed slices of HNSCC surgical resections originating from 12 patients who were stratified into three dose groups (30, 90, and 171 nanomoles). Each dose group was randomly partitioned on the specimen-level 75%/25% into training/testing sets, then all training and testing sets were aggregated. A total of 1,472 standardized radiomic features were extracted from each patch and evaluated by minimum redundancy maximum relevance feature selection, and 25 top-ranked features were used to train a support vector machine (SVM) classifier. Predictive performance of the SVM classifier was compared to fluorescence intensity thresholding for classifying testing set image patches with histologically confirmed malignancy status. Results: Optomics provided consistent improvement in prediction accuracy and false positive rate (FPR) and similar false negative rate (FNR) on all testing set slices, irrespective of dose, compared to fluorescence intensity thresholding (mean accuracies of 89% vs. 81%, P = 0.0072; mean FPRs of 12% vs. 21%, P = 0.0035; and mean FNRs of 13% vs. 17%, P = 0.35). Conclusions: Optomics outperformed conventional fluorescence intensity thresholding for tumor identification using sub-image patches as the unit of analysis. Optomics mitigate diagnostic uncertainties introduced through physiological variability, imaging agent dose, and inter-specimen biases of fluorescence molecular imaging by probing textural image information. This preliminary study provides a proof-of-concept that applying radiomics to fluorescence molecular imaging data offers a promising image analysis technique for cancer detection in fluorescence-guided surgery.

11.
J Biomed Opt ; 28(3): 036005, 2023 03.
Article in English | MEDLINE | ID: mdl-36923987

ABSTRACT

Significance: High-energy x-ray delivery from a linear accelerator results in the production of spectrally continuous broadband Cherenkov light inside tissue. In the absence of attenuation, there is a linear relationship between Cherenkov emission and deposited dose; however, scattering and absorption result in the distortion of this linear relationship. As Cherenkov emission exits the absorption by tissue dominates the observed Cherenkov emission spectrum. Spectroscopic interpretation of this effects may help to better relate Cherenkov emission to ionizing radiation dose delivered during radiotherapy. Aim: In this study, we examined how color Cherenkov imaging intensity variations are caused by absorption from both melanin and hemoglobin level variations, so that future Cherenkov emission imaging might be corrected for linearity to delivered dose. Approach: A custom, time-gated, three-channel intensified camera was used to image the red, green, and blue wavelengths of Cherenkov emission from tissue phantoms with synthetic melanin layers and varying blood concentrations. Our hypothesis was that spectroscopic separation of Cherenkov emission would allow for the identification of attenuated signals that varied in response to changes in blood content versus melanin content, because of their different characteristic absorption spectra. Results: Cherenkov emission scaled with dose linearly in all channels. Absorption in the blue and green channels increased with increasing oxy-hemoglobin in the blood to a greater extent than in the red channel. Melanin was found to absorb with only slight differences between all channels. These spectral differences can be used to derive dose from measured Cherenkov emission. Conclusions: Color Cherenkov emission imaging may be used to improve the optical measurement and determination of dose delivered in tissues. Calibration for these factors to minimize the influence of the tissue types and skin tones may be possible using color camera system information based upon the linearity of the observed signals.


Subject(s)
Melanins , Radiation Oncology , Phantoms, Imaging , X-Rays , Hemoglobins
12.
J Biomed Opt ; 28(8): 082802, 2023 08.
Article in English | MEDLINE | ID: mdl-36619496

ABSTRACT

Significance: This first-in-kind, perfused, and amputated human limb model allows for the collection of human data in preclinical selection of lead fluorescent agents. The model facilitates more accurate selection and testing of fluorophores with human-specific physiology, such as differential uptake and signal in fat between animal and human models with zero risk to human patients. Preclinical testing using this approach may also allow for the determination of tissue toxicity, clearance time of fluorophores, and the production of harmful metabolites. Aim: This study was conducted to determine the fluorescence intensity values and tissue specificity of a preclinical, nerve tissue targeted fluorophore, as well as the capacity of this first-in-kind model to be used for lead fluorescent agent selection in the future. Approach: Freshly amputated human limbs were perfused for 30 min prior to in situ and ex vivo imaging of nerves with both open-field and closed-field commercial fluorescence imaging systems. Results: In situ, open-field imaging demonstrated a signal-to-background ratio (SBR) of 4.7 when comparing the nerve with adjacent muscle tissue. Closed-field imaging demonstrated an SBR of 3.8 when the nerve was compared with adipose tissue and 4.8 when the nerve was compared with muscle. Conclusions: This model demonstrates an opportunity for preclinical testing, evaluation, and selection of fluorophores for use in clinical trials as well as an opportunity to study peripheral pathologies in a controlled environment.


Subject(s)
Amputees , Fluorescent Dyes , Animals , Humans , Fluorescent Dyes/metabolism , Muscles , Extremities , Optical Imaging/methods
13.
Mol Imaging Biol ; 25(1): 46-57, 2023 02.
Article in English | MEDLINE | ID: mdl-36447084

ABSTRACT

Fluorescence-guided surgery (FGS) is an evolving field that seeks to identify important anatomic structures or physiologic phenomena with helpful relevance to the execution of surgical procedures. Fluorescence labeling occurs generally via the administration of fluorescent reporters that may be molecularly targeted, enzyme-activated, or untargeted, vascular probes. Fluorescence guidance has substantially changed care strategies in numerous surgical fields; however, investigation and adoption in orthopaedic surgery have lagged. FGS shows the potential for improving patient care in orthopaedics via several applications including disease diagnosis, perfusion-based tissue healing capacity assessment, infection/tumor eradication, and anatomic structure identification. This review highlights current and future applications of fluorescence guidance in orthopaedics and identifies key challenges to translation and potential solutions.


Subject(s)
Neoplasms , Orthopedic Procedures , Orthopedics , Surgery, Computer-Assisted , Humans , Fluorescence , Optical Imaging/methods , Surgery, Computer-Assisted/methods , Fluorescent Dyes
14.
Mol Imaging Biol ; 25(1): 212-220, 2023 02.
Article in English | MEDLINE | ID: mdl-36307633

ABSTRACT

PURPOSE: Interventional fluorescence imaging is increasingly being utilized to quantify cancer biomarkers in both clinical and preclinical models, yet absolute quantification is complicated by many factors. The use of optical phantoms has been suggested by multiple professional organizations for quantitative performance assessment of fluorescence guidance imaging systems. This concept can be further extended to provide standardized tools to compare and assess image analysis metrics. PROCEDURES: 3D-printed fluorescence phantoms based on solid tumor models were developed with representative bio-mimicking optical properties. Phantoms were produced with discrete tumors embedded with an NIR fluorophore of fixed concentration and either zero or 3% non-specific fluorophore in the surrounding material. These phantoms were first imaged by two fluorescence imaging systems using two methods of image segmentation, and four assessment metrics were calculated to demonstrate variability in the quantitative assessment of system performance. The same analysis techniques were then applied to one tumor model with decreasing tumor fluorophore concentrations. RESULTS: These anatomical phantom models demonstrate the ability to use 3D printing to manufacture anthropomorphic shapes with a wide range of reduced scattering (µs': 0.24-1.06 mm-1) and absorption (µa: 0.005-0.14 mm-1) properties. The phantom imaging and analysis highlight variability in the measured sensitivity metrics associated with tumor visualization. CONCLUSIONS: 3D printing techniques provide a platform for demonstrating complex biological models that introduce real-world complexities for quantifying fluorescence image data. Controlled iterative development of these phantom designs can be used as a tool to advance the field and provide context for consensus-building beyond performance assessment of fluorescence imaging platforms, and extend support for standardizing how quantitative metrics are extracted from imaging data and reported in literature.


Subject(s)
Neoplasms , Printing, Three-Dimensional , Humans , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Optical Imaging , Neoplasms/diagnostic imaging
15.
Int J Radiat Oncol Biol Phys ; 115(4): 983-993, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36309075

ABSTRACT

PURPOSE: We developed a deep learning (DL) model for fast deformable image registration using 2-dimensional sagittal cine magnetic resonance imaging (MRI) acquired during radiation therapy and evaluated its potential for real-time target tracking compared with conventional image registration methods. METHODS AND MATERIALS: Our DL model uses a pair of cine MRI images as input and provides a motion vector field (MVF) as output. The MVF is then applied to align the input images. A retrospective study was conducted to train and evaluate our model using cine MRI data from patients undergoing treatment for abdominal and thoracic tumors. For each treatment fraction, MR-linear accelerator delivery log files, tracking videos, and cine image files were analyzed. Individual MRI frames were temporally sampled to construct a large set of image registration pairs used to evaluate multiple methods. The DL model was optimized using 5-fold cross validation, and model outputs (transformed images and MVFs) using test set images were saved for comparison with 3 conventional registration methods (affine, b-spline, and demons). Evaluation metrics were 3-fold: (1) registration error, (2) MVF stability (both spatial and temporal), and (3) average computation time. RESULTS: We analyzed >21 hours of cine MRI (>629,000 frames) acquired during 86 treatment fractions from 21 patients. In a test set of 10,320 image registration pairs, DL registration outperformed conventional methods in both registration error (affine, b-spline, demons, DL; root mean square error: 0.067, 0.040, 0.036, 0.032; paired t test demons vs DL: t[20] = 4.2, P < .001) and computation time per frame (51, 1150, 4583, 8 ms). Among deformable methods, spatial stability of resulting MVFs was comparable; however, the DL model had significantly improved temporal consistency. CONCLUSIONS: DL-based image registration can leverage large-scale MR cine data sets to outperform conventional registration methods and is a promising solution for real-time deformable motion estimation in radiation therapy.


Subject(s)
Deep Learning , Magnetic Resonance Imaging, Cine , Humans , Magnetic Resonance Imaging, Cine/methods , Retrospective Studies , Magnetic Resonance Imaging/methods , Motion , Image Processing, Computer-Assisted/methods , Algorithms
16.
J Orthop Res ; 41(5): 1040-1048, 2023 05.
Article in English | MEDLINE | ID: mdl-36192829

ABSTRACT

High-energy orthopedic injuries cause severe damage to soft tissues and are prone to infection and healing complications, making them a challenge to manage. Further research is facilitated by a clinically relevant animal model with commensurate fracture severity and soft-tissue damage, allowing evaluation of novel treatment options and techniques. Here we report a reproducible, robust, and clinically relevant animal model of high-energy trauma with extensive soft-tissue damage, based on compressed air-driven membrane rupture as the blast wave source. As proof-of-principle showing the reproducibility of the injury, we evaluate changes in tissue and bone perfusion for a range of different tibia fracture severities, using dynamic contrast-enhanced fluorescence imaging and microcomputed tomography. We demonstrate that fluorescence tracer temporal profiles for skin, femoral vein, fractured bone, and paw reflect the increasing impact of more powerful blasts causing a range of Gustilo grade I-III injuries. The maximum fluorescence intensity of distal tibial bone following 0.1 mg/kg intravenous indocyanine green injection decreased by 35% (p < 0.01), 75% (p < 0.001), and 87% (p < 0.001), following grade I, II, and III injuries, respectively, compared to uninjured bone. Other kinetic parameters of bone and soft tissue perfusion extracted from series of fluorescence images for each animal also showed an association with severity of trauma. In addition, the time-intensity profile of fluorescence showed marked differences in wash-in and wash-out patterns for different injury severities and anatomical locations. This reliable and realistic high-energy trauma model opens new research avenues to better understand infection and treatment strategies. Level of evidence: Level III; Case-control.


Subject(s)
Fractures, Open , Tibial Fractures , Animals , Reproducibility of Results , X-Ray Microtomography , Tibia/diagnostic imaging , Tibial Fractures/diagnostic imaging , Perfusion , Treatment Outcome , Retrospective Studies
17.
J Surg Oncol ; 127(3): 490-500, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36285723

ABSTRACT

BACKGROUND: Imaging-based navigation technologies require static referencing between the target anatomy and the optical sensors. Imaging-based navigation is therefore well suited to operations involving bony anatomy; however, these technologies have not translated to soft-tissue surgery. We sought to determine if fluorescence imaging complement conventional, radiological imaging-based navigation to guide the dissection of soft-tissue phantom tumors. METHODS: Using a human tissue-simulating model, we created tumor phantoms with physiologically accurate optical density and contrast concentrations. Phantoms were dissected using all possible combinations of computed tomography (CT), magnetic resonance, and fluorescence imaging; controls were included. The data were margin accuracy, margin status, tumor spatial alignment, and dissection duration. RESULTS: Margin accuracy was higher for combined navigation modalities compared to individual navigation modalities, and accuracy was highest with combined CT and fluorescence navigation (p = 0.045). Margin status improved with combined CT and fluorescence imaging. CONCLUSIONS: At present, imaging-based navigation has limited application in guiding soft-tissue tumor operations due to its inability to compensate for positional changes during surgery. This study indicates that fluorescence guidance enhances the accuracy of imaging-based navigation and may be best viewed as a synergistic technology, rather than a competing one.


Subject(s)
Soft Tissue Neoplasms , Surgery, Computer-Assisted , Humans , Fluorescence , Surgery, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Soft Tissue Neoplasms/surgery
18.
Article in English | MEDLINE | ID: mdl-35600140

ABSTRACT

Breast-conserving surgery requires that resection margins be cancer-free, but re-excision rates due to positive margins have remained near 20% for much of the last decade with high variability between surgical centers. Recent studies have demonstrated that volumetric X-ray imaging improves margin assessment over standard techniques, given the speed of image reconstruction and full three-dimensional sensing of all margins. Deep learning approaches for automated analysis of volumetric medical image data are gaining traction and could play an important role streamlining the clinical workflow for intra-surgical specimen imaging. X-ray imaging systems currently deployed in clinical studies suffer from poor tumor-to-fibroglandular tissue contrast, motivating the development of adjuvant tools that could potentially complement volumetric X-ray scanning and further improve the future of intra-surgical margin assessment by real-time augmented guidance for the surgeon.

19.
Biomed Opt Express ; 12(11): 6995-7008, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34858694

ABSTRACT

Smartphone-based fluorescence imaging systems have the potential to provide convenient quantitative image guidance at the point of care. However, common approaches have required the addition of complex optical attachments, which reduce translation potential. In this study, a simple clip-on attachment appropriate for fluorescence imaging of protoporphyrin-IX (PpIX) in skin was designed using the built-in light source and ultrawide camera sensor of a smartphone. Software control for image acquisition and quantitative analysis was developed using the 10-bit video capability of the phone. Optical performance was characterized using PpIX in liquid tissue phantoms and endogenously produced PpIX in mice and human skin. The proposed system achieves a very compact form factor (<30 cm3) and can be readily fabricated using widely available low-cost materials. The limit of detection of PpIX in optical phantoms was <10 nM, with good signal linearity from 10 to 1000 nM (R2 >0.99). Both murine and human skin imaging verified that in vivo PpIX fluorescence was detected within 1 hour of applying aminolevulinic acid (ALA) gel. This ultracompact handheld system for quantification of PpIX in skin is well-suited for dermatology clinical workflows. Due to its simplicity and form factor, the proposed system can be readily adapted for use with other smartphone devices and fluorescence imaging applications. Hardware design and software for the system is made freely available on GitHub (https://github.com/optmed/CompactFluorescenceCam).

20.
Sci Rep ; 11(1): 21832, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34750471

ABSTRACT

High positive margin rates in oncologic breast-conserving surgery are a pressing clinical problem. Volumetric X-ray scanning is emerging as a powerful ex vivo specimen imaging technique for analyzing resection margins, but X-rays lack contrast between non-malignant and malignant fibrous tissues. In this study, combined micro-CT and wide-field optical image radiomics were developed to classify malignancy of breast cancer tissues, demonstrating that X-ray/optical radiomics improve malignancy classification. Ninety-two standardized features were extracted from co-registered micro-CT and optical spatial frequency domain imaging samples extracted from 54 breast tumors exhibiting seven tissue subtypes confirmed by microscopic histological analysis. Multimodal feature sets improved classification performance versus micro-CT alone when adipose samples were included (AUC = 0.88 vs. 0.90; p-value = 3.65e-11) and excluded, focusing the classification task on exclusively non-malignant fibrous versus malignant tissues (AUC = 0.78 vs. 0.85; p-value = 9.33e-14). Extending the radiomics approach to high-dimensional optical data-termed "optomics" in this study-offers a promising optical image analysis technique for cancer detection. Radiomic feature data and classification source code are publicly available.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Mastectomy, Segmental/methods , Optical Imaging/methods , X-Ray Microtomography/methods , Adipose Tissue/diagnostic imaging , Breast Neoplasms/classification , Female , Humans , In Vitro Techniques , Margins of Excision , Multimodal Imaging/instrumentation , Multimodal Imaging/methods , Multimodal Imaging/statistics & numerical data , Optical Imaging/instrumentation , Optical Imaging/statistics & numerical data , Optical Phenomena , Stochastic Processes , X-Ray Microtomography/instrumentation , X-Ray Microtomography/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...