Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-37770135

ABSTRACT

Duplex sequencing (DS) is an error-corrected next-generation sequencing method in which molecular barcodes informatically link PCR-copies back to their source DNA strands, enabling computational removal of errors in consensus sequences. The resulting background of less than one artifactual mutation per 107 nucleotides allows for direct detection of somatic mutations. TwinStrand Biosciences, Inc. has developed a DS-based mutagenesis assay to sample the rat genome, which can be applied to genetic toxicity testing. To evaluate this assay for early detection of mutagenesis, a time-course study was conducted using male Hsd:Sprague Dawley SD rats (3 per group) administered a single dose of 40 mg/kg N-ethyl-N-nitrosourea (ENU) via gavage, with mutation frequency (MF) and spectrum analyzed in stomach, bone marrow, blood, and liver tissues at 3 h, 24 h, 7 d, and 28 d post-exposure. Significant increases in MF were observed in ENU-exposed rats as early as 24 h for stomach (site of contact) and bone marrow (a highly proliferative tissue) and at 7 d for liver and blood. The canonical, mutational signature of ENU was established by 7 d post-exposure in all four tissues. Interlaboratory analysis of a subset of samples from different tissues and time points demonstrated remarkable reproducibility for both MF and spectrum. These results demonstrate that MF and spectrum can be evaluated successfully by directly sequencing targeted regions of DNA obtained from various tissues⁠, a considerable advancement compared to currently used in vivo gene mutation assays.


Subject(s)
Ethylnitrosourea , Nitrosourea Compounds , Rats , Male , Animals , Ethylnitrosourea/toxicity , Reproducibility of Results , Rats, Sprague-Dawley , Mutagenesis , Mutation , Mutagens/toxicity
2.
J Toxicol Pathol ; 36(3): 171-179, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37577364

ABSTRACT

Toxicity assessment of the food colorant Gardenia jasminoides Ellis at dietary exposures of 0.0%, 0.1%, 0.5%, 1.5%, 3.0% and 5.0% included measures of T-cell- dependent antibody response, neurotoxicity, and clinical and anatomic pathology in Sprague Dawley rats during mating, gestation, lactation, postnatal development, and following weaning for up to 12 months including 3- and 6-month interim evaluations. Blue coloration of the gastrointestinal tract, mesenteric lymph nodes and kidneys was present in treated rats only at necropsy with minimal blue coloration at the lowest dose and without histopathological correlates in any of the tissues. There was good survival with no consistent treatment-related changes in hematology, clinical chemistry, enhanced evaluation of lymphoid tissues, or tissue histopathology at interim and final time points. T-cell dependent antibody response and neurotoxicity screening were negative in treated rats. The no-observed-adverse-effect level (NOAEL) was determined to be 5.0% gardenia blue (2,854.5 and 3,465.4 mg/kg/day in parental males and females, respectively, prior to mating; 3,113.5 and 4,049.6 mg/kg/day in male and female offspring, respectively, following up to 12 months of exposure.

3.
bioRxiv ; 2023 May 09.
Article in English | MEDLINE | ID: mdl-37214853

ABSTRACT

Duplex sequencing (DuplexSeq) is an error-corrected next-generation sequencing (ecNGS) method in which molecular barcodes informatically link PCR-copies back to their source DNA strands, enabling computational removal of errors by comparing grouped strand sequencing reads. The resulting background of less than one artifactual mutation per 10 7 nucleotides allows for direct detection of somatic mutations. TwinStrand Biosciences, Inc. has developed a DuplexSeq-based mutagenesis assay to sample the rat genome, which can be applied to genetic toxicity testing. To evaluate this assay for early detection of mutagenesis, a time-course study was conducted using male Hsd:Sprague Dawley SD rats (3 per group) administered a single dose of 40 mg/kg N-ethyl-N-nitrosourea (ENU) via gavage, with mutation frequency (MF) and spectrum analyzed in stomach, bone marrow, blood, and liver tissues at 3 h, 24 h, 7 d, and 28 d post-exposure. Significant increases in MF were observed in ENU-exposed rats as early as 24 h for stomach (site of contact) and bone marrow (a highly proliferative tissue) and at 7 d for liver and blood. The canonical, mutational signature of ENU was established by 7 d post-exposure in all four tissues. Interlaboratory analysis of a subset of samples from different tissues and time points demonstrated remarkable reproducibility for both MF and spectrum. These results demonstrate that MF and spectrum can be evaluated successfully by directly sequencing targeted regions of DNA obtained from various tissues, a considerable advancement compared to currently used in vivo gene mutation assays. HIGHLIGHTS: DuplexSeq is an ultra-accurate NGS technology that directly quantifies mutationsENU-dependent mutagenesis was detected 24 h post-exposure in proliferative tissuesMultiple tissues exhibited the canonical ENU mutation spectrum 7 d after exposureResults obtained with DuplexSeq were highly concordant between laboratoriesThe Rat-50 Mutagenesis Assay is promising for applications in genetic toxicology.

4.
Data Brief ; 38: 107420, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34660856

ABSTRACT

The National Toxicology Program (NTP) reported that chronic exposure to varying dietary concentrations of 4-methylimidazole (4-MeI) increased lung tumors in female and male mice [1]. In this study, mice (male and female B6C3F1 mice) were either administered 4-MeI by oral gavage (0, 50, 100, 200, or 300 mg/kg/day) for 2 days or exposed for 5 and 28 days to 4-MeI in the diet (0, 150, 300, 1250, or 2500 ppm) and whole transcriptome (RNA-Sequencing) data from 4-MeI-exposed B6C3F1 mice to determine whether changes occurred in the target (lung) and nontarget (liver) tissues. This analysis was conducted to provide information with which to evaluate biological processes affected by exposure to 4-MeI, with a focus on identifying key events that could be used to propose a plausible mode of action (MoA) for mouse lung tumors [2].

5.
Toxicol Rep ; 8: 511-519, 2021.
Article in English | MEDLINE | ID: mdl-33747796

ABSTRACT

Hydroxyanthracene derivatives (HAD) are naturally present in the latex layer of Aloe vera leaf, predominantly as aloins A, B and aloe-emodin. HAD are typically removed from commercial ingestible aloe products through activated charcoal filtration (decolorization). Current research aimed to evaluate genotoxic potential of a purified aloe whole leaf dry juice containing 0.3 ppm of total aloins and non-detectable aloe-emodin (LOD =0.01 ppm) in the L5178Y mouse lymphoma assay (MLA; OECD 490) and in vivo comet assay (OECD 489). No marked increases in mutant frequency at the tk locus were observed in the MLA at concentrations up to 5000 µg/mL for 3 h and 24 h (-S9), and up to a precipitating concentration of 3000 µg/mL for 3 h (+S9) compared to concurrent vehicle control. Relative total growth at the highest analyzable concentrations at 3 h (±S9) and 24 h (-S9) ranged from 64 to 133 %. In the comet assay, no statistically significant increases in DNA strand breaks were detected in the colon or kidney following oral gavage of 500, 1000 or 2000 mg/kg/day in male F344 rats for 2 days compared to concurrent vehicle control. Overall, these findings demonstrated the test article containing minimal HAD is not genotoxic under the described experimental conditions.

6.
Regul Toxicol Pharmacol ; 119: 104838, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33301869

ABSTRACT

Lidocaine has not been associated with cancer in humans despite 8 decades of therapeutic use. Its metabolite, 2,6-xylidine, is a rat carcinogen, believed to induce genotoxicity via N-hydroxylation and DNA adduct formation, a non-threshold mechanism of action. To better understand this dichotomy, we review literature pertaining to metabolic activation and genotoxicity of 2,6-xylidine, identifying that it appears resistant to N-hydroxylation and instead metabolises almost exclusively to DMAP (an aminophenol). At high exposures (sufficient to saturate phase 2 metabolism), this may undergo metabolic threshold-dependent activation to a quinone-imine with potential to redox cycle producing ROS, inducing cytotoxicity and genotoxicity. A new rat study found no evidence of genotoxicity in vivo based on micronuclei in bone marrow, comets in nasal tissue or female liver, despite high level exposure to 2,6-xylidine (including metabolites). In male liver, weak dose-related comet increases, within the historical control range, were associated with metabolic overload and acute systemic toxicity. Benchmark dose analysis confirmed a non-linear dose response. The weight of evidence indicates 2,6-xylidine is a non-direct acting (metabolic threshold-dependent) genotoxin, and is not genotoxic in vivo in rats in the absence of acute systemic toxic effects, which occur at levels 35 × beyond lidocaine-related exposure in humans.


Subject(s)
Aniline Compounds/toxicity , Mutagens/toxicity , Activation, Metabolic , Anesthetics, Local/pharmacokinetics , Anesthetics, Local/toxicity , Aniline Compounds/pharmacokinetics , Animals , Humans , Lidocaine/pharmacokinetics , Lidocaine/toxicity , Mutagenicity Tests , Mutagens/pharmacokinetics
7.
PLoS One ; 15(7): e0236374, 2020.
Article in English | MEDLINE | ID: mdl-32735564

ABSTRACT

We recently reported the development of a fully-human, CD3-binding bispecific antibody for immunotherapy of malignant glioma. To translate this therapeutic (hEGFRvIII-CD3- bi-scFv) to clinical trials and to help further the translation of other similar CD3-binding therapeutics, some of which are associated with neurologic toxicities, we performed a good laboratory practice (GLP) toxicity study to assess for potential behavioral, chemical, hematologic, and pathologic toxicities including evaluation for experimental autoimmune encephalomyelitis (EAE). To perform this study, male and female C57/BL6 mice heterozygous for the human CD3 transgene (20/sex) were allocated to one of four designated groups. All animals were administered one dose level of hEGFRvIII-CD3 bi-scFv or vehicle control. Test groups were monitored for feed consumption, changes in body weight, and behavioral disturbances including signs of EAE. Urinalysis, hematologic, and clinical chemistry analysis were also performed. Vehicle and test chemical-treated groups were humanely euthanized 48 hours or 14 days following dose administration. Complete gross necropsy of all tissues was performed, and selected tissues plus all observed gross lesions were collected and evaluated for microscopic changes. This included hematoxylin-eosin histopathological evaluation and Fe-ECR staining for myelin sheath enumeration. There were no abnormal clinical observations or signs of EAE noted during the study. There were no statistical changes in food consumption, body weight gain, or final body weight among groups exposed to hEGFRvIII-CD3 bi-scFv compared to the control groups for the 2- and 14-day timepoints. There were statistical differences in some clinical chemistry, hematologic and urinalysis endpoints, primarily in the females at the 14-day timepoint (hematocrit, calcium, phosphorous, and total protein). No pathological findings related to hEGFRvIII-CD3 bi-scFv administration were observed. A number of gross and microscopic observations were noted but all were considered to be incidental background findings. The results of this study allow for further translation of this and other important CD3 modulating bispecific antibodies.


Subject(s)
Antibodies, Bispecific/pharmacology , CD3 Complex/immunology , ErbB Receptors/immunology , Glioma/immunology , Animals , Antibodies, Bispecific/immunology , Body Weight/drug effects , Body Weight/immunology , CD3 Complex/pharmacology , Disease Models, Animal , ErbB Receptors/pharmacology , Female , Glioma/pathology , Glioma/therapy , Humans , Immunotherapy/adverse effects , Male , Mice , Single-Chain Antibodies/immunology , Single-Chain Antibodies/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
8.
Toxicol Sci ; 149(1): 67-88, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26396155

ABSTRACT

Toxic industrial chemicals induce liver injury, which is difficult to diagnose without invasive procedures. Identifying indicators of end organ injury can complement exposure-based assays and improve predictive power. A multiplexed approach was used to experimentally evaluate a panel of 67 genes predicted to be associated with the fibrosis pathology by computationally mining DrugMatrix, a publicly available repository of gene microarray data. Five-day oral gavage studies in male Sprague Dawley rats dosed with varying concentrations of 3 fibrogenic compounds (allyl alcohol, carbon tetrachloride, and 4,4'-methylenedianiline) and 2 nonfibrogenic compounds (bromobenzene and dexamethasone) were conducted. Fibrosis was definitively diagnosed by histopathology. The 67-plex gene panel accurately diagnosed fibrosis in both microarray and multiplexed-gene expression assays. Necrosis and inflammatory infiltration were comorbid with fibrosis. ANOVA with contrasts identified that 51 of the 67 predicted genes were significantly associated with the fibrosis phenotype, with 24 of these specific to fibrosis alone. The protein product of the gene most strongly correlated with the fibrosis phenotype PCOLCE (Procollagen C-Endopeptidase Enhancer) was dose-dependently elevated in plasma from animals administered fibrogenic chemicals (P < .05). Semiquantitative global mass spectrometry analysis of the plasma identified an additional 5 protein products of the gene panel which increased after fibrogenic toxicant administration: fibronectin, ceruloplasmin, vitronectin, insulin-like growth factor binding protein, and α2-macroglobulin. These results support the data mining approach for identifying gene and/or protein panels for assessing liver injury and may suggest bridging biomarkers for molecular mediators linked to histopathology.


Subject(s)
Gene Expression Profiling , Liver Cirrhosis/chemically induced , Liver/pathology , Animals , Chemotaxis , Computational Biology , Data Mining , Extracellular Matrix Proteins/metabolism , Glycoproteins/blood , Inflammation/etiology , Intercellular Signaling Peptides and Proteins , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , Rats , Rats, Sprague-Dawley
9.
Mutat Res Genet Toxicol Environ Mutagen ; 786-788: 172-81, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26212309

ABSTRACT

As a part of an international validation of the in vivo rat alkaline comet assay (comet assay) initiated by the Japanese Center for the Validation of Alternative Methods (JaCVAM) we examined six chemicals for potential to induce DNA damage: 2-acetylaminofluorene (2-AAF), N-nitrosodimethylamine (DMN), o-anisidine, 1,2-dimethylhydrazine dihydrochloride (1,2-DMH), sodium chloride, and sodium arsenite. DNA damage was evaluated in the liver and stomach of 7- to 9-week-old male Sprague Dawley rats. Of the five genotoxic carcinogens tested in our laboratory, DMN and 1,2-DMH were positive in the liver and negative in the stomach, 2-AAF and o-anisidine produced an equivocal result in liver and negative results in stomach, and sodium arsenite was negative in both liver and stomach. 1,2-DMH and DMN induced dose-related increases in hedgehogs in the same tissue (liver) that exhibited increased DNA migration. However, no cytotoxicity was indicated by the neutral diffusion assay (assessment of highly fragmented DNA) or histopathology in response to treatment with any of the tested chemicals. Therefore, the increased DNA damage resulting from exposure to DMN and 1,2-DMH was considered to represent a genotoxic response. Sodium chloride, a non-genotoxic non-carcinogen, was negative in both tissues as would be predicted. Although only two (1,2-DMH and DMN) out of five genotoxic carcinogens produced clearly positive results in the comet assay, the results obtained for o-anisidine and sodium arsenite in liver and stomach cells are consistent with the known mode of genotoxicity and tissue specificity exhibited by these carcinogens. In contrast, given the known genotoxic mode-of-action and target organ carcinogenicity of 2-AAF, it is unclear why this chemical failed to convincingly increase DNA migration in the liver. Thus, the results of the comet assay validation studies conducted in our laboratory were considered appropriate for five out of the six test chemicals.


Subject(s)
Comet Assay/methods , DNA Damage/drug effects , 1,2-Dimethylhydrazine/toxicity , 2-Acetylaminofluorene/toxicity , Administration, Oral , Aniline Compounds/toxicity , Animals , Arsenites/toxicity , Carcinogens/toxicity , DNA Fragmentation/drug effects , Dimethylnitrosamine/toxicity , Dose-Response Relationship, Drug , Liver/drug effects , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sodium Chloride/toxicity , Sodium Compounds/toxicity , Stomach/drug effects
10.
Environ Mol Mutagen ; 53(3): 227-38, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22351108

ABSTRACT

Styrene-acrylonitrile Trimer (SAN Trimer), a by-product in production of acrylonitrile styrene plastics, was identified at a Superfund site in Dover Township, NJ, where childhood cancer incidence rates were elevated for a period of several years. SAN Trimer was therefore tested by the National Toxicology Program in a 2-year perinatal carcinogenicity study in F344/N rats and a bacterial mutagenicity assay; both studies gave negative results. To further characterize its genotoxicity, SAN Trimer was subsequently evaluated in a combined micronucleus (MN)/Comet assay in juvenile male and female F344 rats. SAN Trimer (37.5, 75, 150, or 300 mg/kg/day) was administered by gavage once daily for 4 days. Micronucleated reticulocyte (MN-RET) frequencies in blood were determined by flow cytometry, and DNA damage in blood, liver, and brain cells was assessed using the Comet assay. Highly significant dose-related increases (P < 0.0001) in MN-RET were measured in both male and female rats administered SAN Trimer. The RET population was reduced in high dose male rats, suggesting chemical-related bone marrow toxicity. Results of the Comet assay showed significant, dose-related increases in DNA damage in brain cells of male (P < 0.0074) and female (P < 0.0001) rats; increased levels of DNA damage were also measured in liver cells and leukocytes of treated rats. Chemical-related cytotoxicity was not indicated in any of the tissues examined for DNA damage. The results of this subacute MN/Comet assay indicate induction of significant genetic damage in multiple tissues of weanling F344 male and female rats after oral exposure to SAN Trimer.


Subject(s)
Acrylonitrile/analogs & derivatives , Acrylonitrile/toxicity , Blood Cells/drug effects , Brain/drug effects , DNA Damage , Liver/drug effects , Styrene/toxicity , Styrenes/toxicity , Animals , Comet Assay , Dose-Response Relationship, Drug , Female , Male , Micronucleus Tests , Rats , Rats, Inbred F344
11.
Reprod Biol Endocrinol ; 10: 7, 2012 Jan 30.
Article in English | MEDLINE | ID: mdl-22289508

ABSTRACT

BACKGROUND: Studies published in the 1970s by Mostafa S. Fahim and colleagues showed that a short treatment with ultrasound caused the depletion of germ cells and infertility. The goal of the current study was to determine if a commercially available therapeutic ultrasound generator and transducer could be used as the basis for a male contraceptive. METHODS: Sprague-Dawley rats were anesthetized and their testes were treated with 1 MHz or 3 MHz ultrasound while varying power, duration and temperature of treatment. RESULTS: We found that 3 MHz ultrasound delivered with 2.2 Watt per square cm power for fifteen minutes was necessary to deplete spermatocytes and spermatids from the testis and that this treatment significantly reduced epididymal sperm reserves. 3 MHz ultrasound treatment reduced total epididymal sperm count 10-fold lower than the wet-heat control and decreased motile sperm counts 1,000-fold lower than wet-heat alone. The current treatment regimen provided nominally more energy to the treatment chamber than Fahim's originally reported conditions of 1 MHz ultrasound delivered at 1 Watt per square cm for ten minutes. However, the true spatial average intensity, effective radiating area and power output of the transducers used by Fahim were not reported, making a direct comparison impossible. We found that germ cell depletion was most uniform and effective when we rotated the therapeutic transducer to mitigate non-uniformity of the beam field. The lowest sperm count was achieved when the coupling medium (3% saline) was held at 37 degrees C and two consecutive 15-minute treatments of 3 MHz ultrasound at 2.2 Watt per square cm were separated by 2 days. CONCLUSIONS: The non-invasive nature of ultrasound and its efficacy in reducing sperm count make therapeutic ultrasound a promising candidate for a male contraceptive. However, further studies must be conducted to confirm its efficacy in providing a contraceptive effect, to test the result of repeated use, to verify that the contraceptive effect is reversible and to demonstrate that there are no detrimental, long-term effects from using ultrasound as a method of male contraception.


Subject(s)
Contraception/methods , Epididymis/cytology , Sperm Count , Testis/cytology , Ultrasonic Therapy/methods , Animals , Hot Temperature , Male , Meiosis , Rats , Rats, Sprague-Dawley , Ultrasonic Therapy/instrumentation
12.
Toxicol Pathol ; 33(2): 272-82, 2005.
Article in English | MEDLINE | ID: mdl-15902971

ABSTRACT

We recently proposed a chemically induced rat model for human hemolytic disorders associated with thrombosis. The objective of the present investigation was to apply a noninvasive, high-magnification X-ray analysis, the Faxitron radiography system, to characterize the protracted bone damage associated with this 2-butoxyethanol model and to validate it by histopathology. Groups of female Fischer 344 rats were given 0, 250, or 300 mg of 2-butoxyethanol/kg body weight daily for 4 consecutive days. Groups were then sacrificed 2 hours or 26 days after the final treatment. The treated animals displayed a darkened purple-red discoloration on the distal tail. Histopathological evaluation, including phosphotungstic acid-hematoxylin staining of animals sacrificed 2 hours after the final treatment, revealed disseminated thrombosis and infarction in multiple organs, including bones. The Faxitron MX-20 specimen radiography system was used to image selected bones of rats sacrificed 26 days posttreatment. Premature thinning of the growth plate occurred in the calcaneus, lumbar and coccygeal vertebrae, femur, and ilium of the treated animals. Areas of decreased radiographic densities were seen in the diaphysis of the femur of all treated animals. The bones were then examined histologically and showed a range of changes, including loss or damage to growth plates and necrosis of cortical bone. No thrombi were seen in the animals sacrificed at 30 days, but bone and growth plate changes consistent with prior ischemia were noted. The Faxitron proved to be an excellent noninvasive tool that can be used in future studies with this animal model to examine treatment modalities for the chronic effects of human thrombotic disorders.


Subject(s)
Disease Models, Animal , Disseminated Intravascular Coagulation/chemically induced , Ethylene Glycols/toxicity , Growth Plate/drug effects , Osteonecrosis/chemically induced , Solvents/toxicity , Animals , Body Weight/drug effects , Bone and Bones/diagnostic imaging , Disseminated Intravascular Coagulation/complications , Disseminated Intravascular Coagulation/pathology , Dose-Response Relationship, Drug , Female , Growth Plate/diagnostic imaging , Growth Plate/pathology , Osteonecrosis/etiology , Osteonecrosis/pathology , Radiography/instrumentation , Rats , Rats, Inbred F344 , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...