Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 3: 404-14, 2012.
Article in English | MEDLINE | ID: mdl-23016145

ABSTRACT

Silver nanoparticles were synthesized by an enzyme-induced growth process on solid substrates. In order to customize the enzymatically grown nanoparticles (EGNP) for analytical applications in biomolecular research, a detailed study was carried out concerning the time evolution of the formation of the silver nanoparticles, their morphology, and their chemical composition. Therefore, silver-nanoparticle films of different densities were investigated by using scanning as well as transmission electron microscopy to examine their structure. Cross sections of silver nanoparticles, prepared for analysis by transmission electron microscopy were additionally studied by energy-dispersive X-ray spectroscopy in order to probe their chemical composition. The surface coverage of substrates with silver nanoparticles and the maximum particle height were determined by Rutherford backscattering spectroscopy. Variations in the silver-nanoparticle films depending on the conditions during synthesis were observed. After an initial growth state the silver nanoparticles exhibit the so-called desert-rose or nanoflower-like structure. This complex nanoparticle structure is in clear contrast to the auto-catalytically grown spherical particles, which maintain their overall geometrical appearance while increasing their diameter. It is shown, that the desert-rose-like silver nanoparticles consist of single-crystalline plates of pure silver. The surface-enhanced Raman spectroscopic (SERS) activity of the EGNP structures is promising due to the exceptionally rough surface structure of the silver nanoparticles. SERS measurements of the vitamin riboflavin incubated on the silver nanoparticles are shown as an exemplary application for quantitative analysis.

2.
Article in English | MEDLINE | ID: mdl-22742561

ABSTRACT

In this paper, a method for the detection of norbixin and tartrazine in sugar by means of resonance Raman spectroscopy is presented. The extraction was done in four steps using methanol and the measurements were performed in aqueous solution. The excitation wavelength was 514 nm for norbixin and 488 nm for tartrazine samples. The characteristic resonance Raman signals of the dyes were fitted by different functions. Depending on the R² values of the different fits, each spectrum was classified as positive or negative response. A detection limit of 250 ng g⁻¹ for norbixin and 989 ng g⁻¹ for tartrazine in solid sugar samples could be reached by logistic regression.


Subject(s)
Carotenoids/analysis , Coloring Agents/analysis , Dietary Sucrose/analysis , Food Additives/analysis , Food Inspection/methods , Tartrazine/analysis , Candy/analysis , Candy/standards , Dietary Sucrose/standards , European Union , Germany , Limit of Detection , Logistic Models , Quality Control , Spectrophotometry , Spectrum Analysis, Raman
3.
Anal Bioanal Chem ; 396(4): 1381-4, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20033678

ABSTRACT

A sequence-specific detection method of DNA is presented combining a solid chip surface for immobilisation of capture DNAs with a microfluidic platform and a readout of the chip based on SERS. The solid chip surface is used for immobilisation of different capture DNAs, where target strands can be hybridised and unbound surfactants can be washed away. For the detection via SERS, short-labelled oligonucleotides are hybridised to the target strands. This technique is combined with a microfluidic platform that enables a fast and automated preparation process. By applying a chip format, the problems of sequence-specific DNA detection in solution phase by means of SERS can be overcome. With this setup, we are able to distinguish between different complementary and non-complementary target sequences in one sample solution.


Subject(s)
Microfluidics , Oligonucleotide Array Sequence Analysis , Spectrum Analysis, Raman , Spectrum Analysis, Raman/instrumentation , Spectrum Analysis, Raman/methods
4.
Chemphyschem ; 11(2): 394-8, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20033977

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is an emerging technology in the field of analytics. Due to the high sensitivity in connection with specific Raman molecular fingerprint information SERS can be used in a variety of analytical, bioanalytical, and biosensing applications. However, for the SERS effect substrates with metal nanostructures are needed. The broad application of this technology is greatly hampered by the lack of reliable and reproducible substrates. Usually the activity of a given substrate has to be determined by time-consuming experiments such as calibration or ultramicroscopic studies. To use SERS as a standard analytical tool, cheap and reproducible substrates are required, preferably with a characterization technique that does not interfere with the subsequent measurements. Herein we introduce an innovative approach to produce low-cost and large-scale reproducible substrates for SERS applications, which allows easy and economical production of micropatterned SERS active surfaces on a large scale. This approach is based on an enzyme-induced growth of silver nanostructures. The special structural feature of the enzymatically deposited silver nanoparticles prevents the breakdown of SERS activity even at high particle densities (particle density >60%) that lead to a conductive layer. In contrast to other approaches, this substrate exhibits a relationship between electrical conductivity and the resulting SERS activity of a given spot. This enables the prediction of the SERS activity of the nanostructure ensemble and therewith the controllable and reproducible production of SERS substrates of enzymatic silver nanoparticles on a large scale, utilizing a simple measurement of the electrical conductivity. Furthermore, through a correlation between the conductivity and the SERS activity of the substrates it is possible to quantify SERS measurements with these substrates.

SELECTION OF CITATIONS
SEARCH DETAIL
...