Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Rev ; 33(3-4): 273-97, 2001.
Article in English | MEDLINE | ID: mdl-11768770

ABSTRACT

At present, the methods and enzymology of the UDP-glucuronosyltransferases (UGTs) lag behind that of the cytochromes P450 (CYPs). About 15 human UGTs have been identified, and knowledge about their regulation, substrate selectivity, and tissue distribution has progressed recently. Alamethicin has been characterized as a treatment to remove the latency of microsomal glucuronidations. Most UGT isoforms appear to have a distinct hepatic and/or extrahepatic expression, resulting in significant expression in kidney, intestine, and steroid target tissues. The gastrointestinal tract possesses a complex expression pattern largely containing members of the UGT1A subfamily. Thus, these forms are poised to participate in the first pass metabolism of oral drugs. The authors and others have identified a significant expression of UGT1A1 in human small intestine, an enzyme possessing considerable allelic variability and a polymorphic expression pattern in intestine. Intestinal glucuronidation therefore plays a major role not only in first pass metabolism, but also in the degree of interindividual variation in overall oral bioavailability. Due to issues such as significant genetic variability and tissue localization in first-pass organs, clearance due to UGT1A1 should be minimized for new drugs.


Subject(s)
Glucuronosyltransferase/physiology , Liver/enzymology , Pharmaceutical Preparations/metabolism , Glucuronosyltransferase/genetics , Humans , Liver/physiology
2.
J Vet Pharmacol Ther ; 21(2): 99-106, 1998 Apr.
Article in English | MEDLINE | ID: mdl-9597646

ABSTRACT

The plasma pharmacokinetics, lung tissue to plasma concentration ratios, and depletion profiles in edible tissue (liver, muscle, kidney, fat and injection site) for a single subcutaneous dose of a novel macrolide antibiotic, CP-163505 (20-[3-dimethylaminopropyl(L-alanyl)amino]-20-deoxo-repromicin), were investigated in crossbred beef cattle. Mean peak plasma concentration of 2.5 +/- 0.4 micrograms/mL, occurring at 0.5 h, was found for CP-163505 following a 5 mg/kg dose (n = 5). The pharmacokinetic profile consisted of a distribution phase, followed by an extended terminal elimination phase (t1/2 of 19 h). The disposition of CP-163505 was characterized by distribution from the plasma into the tissue resulting in lung to plasma ratios of 103 and 87 at 72 h following a single 5 or 10 mg/kg dose, respectively. The depletion of CP-163505 from edible tissues was determined following administration of tritiated CP-163505 at a dose of 10 mg/kg. On day 42, the liver contained the highest mean concentration of total tritium residues, 5.9 +/- 3.4 micrograms/g. CP-163505 was determined to be a significant component of the total residues in liver with 72% on day 3 and 50% on day 42. Three metabolites of CP-163505 were identified by liquid chromatography with mass spectrometry (LC/MS/MS) in liver samples: loss of alanine, formation of an hydroxyl derivative, and sulfate addition to the lactone ring.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Drug Residues/analysis , Macrolides , Administration, Oral , Animals , Anti-Bacterial Agents/administration & dosage , Area Under Curve , Cattle , Chromatography, Liquid , Kidney/metabolism , Liver/metabolism , Lung/metabolism , Mass Spectrometry , Muscles/metabolism , Reproducibility of Results
3.
J Chromatogr B Biomed Appl ; 675(2): 243-50, 1996 Jan 26.
Article in English | MEDLINE | ID: mdl-8852711

ABSTRACT

A rugged, simple, and selective method for the determination of danofloxacin and its primary metabolite, N-desmethyldanofloxacin, in cattle (liver, muscle, kidney, and fat) and chicken (liver and muscle) tissues was developed. The method is selective for danofloxacin and N-desmethyldanofloxacin over other veterinary important fluoroquinolones, such as enrofloxacin, ciprofloxacin, norfloxacin, and ofloxacin. Selectivity is achieved through a combination of extraction, chromatography, and fluorescence detection. The analytes were extracted from homogenized tissues using a methanol-perchloric-phosphoric acid solution. After centrifugation, direct injection of extraction supernate was possible. The limit of quantitation was 20 pg on column. Separation was achieved on an Inertsil C8 (5 microns, 100 A) column with dimensions of 250 x 4.6 mm I.D. The mobile phase consisted of 0.05 M phosphate buffer (pH 3.5)-acetonitrile (88:12). A fluorescence detector was utilized with an excitation wavelength of 280 nm and an emission wavelength of 440 nm. The assay was accurate and reproducible within the range of 10 to 500 ng/g for both danofloxacin and N-desmethyldanofloxacin. Intra-assay accuracy was between 98 and 101%, and precision was less than 4%. Inter-assay accuracy was between 99 and 102%, while precision was less than 2%. Recoveries for both analytes over the dynamic range were greater than 90% for all the tissues.


Subject(s)
Anti-Infective Agents/metabolism , Fluoroquinolones , Meat/analysis , Quinolones/analysis , Quinolones/metabolism , Adipose Tissue/metabolism , Animals , Cattle , Chickens , Kidney/metabolism , Liver/metabolism , Muscles/metabolism , Reproducibility of Results , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...