Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Neurobiol Dis ; 183: 106160, 2023 07.
Article in English | MEDLINE | ID: mdl-37209926

ABSTRACT

Approximately 1 in 26 people will develop epilepsy in their lifetime, but current treatment options leave as many as half of all epilepsy patients with uncontrolled seizures. In addition to the burden of the seizures themselves, chronic epilepsy can be associated with cognitive deficits, structural changes, and devastating negative outcomes such as sudden unexpected death in epilepsy (SUDEP). Thus, major challenges in epilepsy research surround the need to both develop new therapeutic targets for intervention as well as shed light on the mechanisms by which chronic epilepsy can lead to comorbidities and negative outcomes. Despite not being traditionally associated with epilepsy or seizures, the cerebellum has emerged as not only a brain region that can serve as an important target for seizure control, but one that may also be profoundly impacted by chronic epilepsy. Here, we discuss targeting the cerebellum for potential therapeutic intervention and discuss pathway insights gained from recent optogenetic studies. We then review observations of cerebellar alterations during seizures and in chronic epilepsy, as well as the potential for the cerebellum to be a seizure focus. Cerebellar alterations in epilepsy may be critical to patient outcomes, highlighting the need for a more comprehensive understanding and appreciation of the cerebellum in the epilepsies.


Subject(s)
Epilepsy , Sudden Unexpected Death in Epilepsy , Humans , Epilepsy/complications , Seizures/complications , Cerebellum
2.
Cereb Cortex ; 33(11): 6543-6558, 2023 05 24.
Article in English | MEDLINE | ID: mdl-36734268

ABSTRACT

The stability and flexibility of the functional parcellation of the cerebral cortex is fundamental to how familiar and novel information is both represented and stored. We leveraged new advances in Ca2+ sensors and microscopy to understand the dynamics of functional segmentation in the dorsal cerebral cortex. We performed wide-field Ca2+ imaging in head-fixed mice and used spatial independent component analysis (ICA) to identify independent spatial sources of Ca2+ fluorescence. The imaging data were evaluated over multiple timescales and discrete behaviors including resting, walking, and grooming. When evaluated over the entire dataset, a set of template independent components (ICs) were identified that were common across behaviors. Template ICs were present across a range of timescales, from days to 30 seconds, although with lower occurrence probability at shorter timescales, highlighting the stability of the functional segmentation. Importantly, unique ICs emerged at the shorter duration timescales that could act to transiently refine the cortical network. When data were evaluated by behavior, both common and behavior-specific ICs emerged. Each behavior is composed of unique combinations of common and behavior-specific ICs. These observations suggest that cerebral cortical functional segmentation exhibits considerable spatial stability over time and behaviors while retaining the flexibility for task-dependent reorganization.


Subject(s)
Calcium , Neocortex , Mice , Animals , Neocortex/diagnostic imaging , Time Factors , Magnetic Resonance Imaging/methods
3.
Biology (Basel) ; 11(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36358302

ABSTRACT

A central tenet of neuroscience is that sensory, motor, and cognitive behaviors are generated by the communications and interactions among neurons, distributed within and across anatomically and functionally distinct brain regions. Therefore, to decipher how the brain plans, learns, and executes behaviors requires characterizing neuronal activity at multiple spatial and temporal scales. This includes simultaneously recording neuronal dynamics at the mesoscale level to understand the interactions among brain regions during different behavioral and brain states. Wide-field Ca2+ imaging, which uses single photon excitation and improved genetically encoded Ca2+ indicators, allows for simultaneous recordings of large brain areas and is proving to be a powerful tool to study neuronal activity at the mesoscopic scale in behaving animals. This review details the techniques used for wide-field Ca2+ imaging and the various approaches employed for the analyses of the rich neuronal-behavioral data sets obtained. Also discussed is how wide-field Ca2+ imaging is providing novel insights into both normal and altered neural processing in disease. Finally, we examine the limitations of the approach and new developments in wide-field Ca2+ imaging that are bringing new capabilities to this important technique for investigating large-scale neuronal dynamics.

4.
Cerebellum ; 21(5): 814-820, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35471627

ABSTRACT

After decades of study, a comprehensive understanding of cerebellar function remains elusive. Several hypotheses have been put forward over the years, including that the cerebellum functions as a forward internal model. Integrated into the forward model framework is the long-standing view that Purkinje cell complex spike discharge encodes error information. In this brief review, we address both of these concepts based on our recordings of cerebellar Purkinje cells over the last decade as well as newer findings from the literature. During a high-dimensionality tracking task requiring continuous error processing, we find that complex spike discharge provides a rich source of non-error signals to Purkinje cells, indicating that the classical error encoding role ascribed to climbing fiber input needs revision. Instead, the simple spike discharge of Purkinje cells carries robust predictive and feedback signals of performance errors, as well as kinematics. These simple spike signals are consistent with a forward internal model. We also show that the information encoded in the simple spike is dynamically adjusted by the complex spike firing. Synthesis of these observations leads to the hypothesis that complex spikes convey behavioral state changes, possibly acting to select and maintain forward models.


Subject(s)
Movement , Purkinje Cells , Action Potentials , Biomechanical Phenomena , Cerebellum
5.
J Neurosci ; 41(49): 10091-10107, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34716233

ABSTRACT

Despite being canonically considered a motor control structure, the cerebellum is increasingly recognized for important roles in processes beyond this traditional framework, including seizure suppression. Excitatory fastigial neurons project to a large number of downstream targets, and it is unclear whether this broad targeting underlies seizure suppression, or whether a specific output may be sufficient. To address this question, we used the intrahippocampal kainic acid mouse model of temporal lobe epilepsy, male and female animals, and a dual-virus approach to selectively label and manipulate fastigial outputs. We examined fastigial neurons projecting to the superior colliculus, medullary reticular formation, and central lateral nucleus of the thalamus, and found that these comprise largely nonoverlapping populations of neurons that send collaterals to unique sets of additional, somewhat overlapping, thalamic and brainstem regions. We found that neither optogenetic stimulation of superior colliculus nor reticular formation output channels attenuated hippocampal seizures. In contrast, on-demand stimulation of fastigial neurons targeting the central lateral nucleus robustly inhibited seizures. Our results indicate that fastigial control of hippocampal seizures does not require simultaneous modulation of many fastigial output channels. Rather, selective modulation of the fastigial output channel to the central lateral thalamus, specifically, is sufficient for seizure control. More broadly, our data highlight the concept of specific cerebellar output channels, whereby discrete cerebellar nucleus neurons project to specific aggregates of downstream targets, with important consequences for therapeutic interventions.SIGNIFICANCE STATEMENT The cerebellum has an emerging relationship with nonmotor systems and may represent a powerful target for therapeutic intervention in temporal lobe epilepsy. We find, as previously reported, that fastigial neurons project to numerous brain regions via largely segregated output channels, and that projection targets cannot be predicted simply by somatic locations within the nucleus. We further find that on-demand optogenetic excitation of fastigial neurons projecting to the central lateral nucleus of the thalamus-but not fastigial neurons projecting to the reticular formation, superior colliculus, or ventral lateral thalamus-is sufficient to attenuate hippocampal seizures.


Subject(s)
Cerebellum/physiopathology , Epilepsy, Temporal Lobe/physiopathology , Neural Pathways/physiopathology , Neurons/physiology , Seizures/physiopathology , Animals , Female , Male , Mice , Mice, Inbred C57BL
6.
Epilepsy Behav ; 121(Pt B): 106909, 2021 08.
Article in English | MEDLINE | ID: mdl-32035793

ABSTRACT

Epilepsy is the fourth most common neurological disorder, but current treatment options provide limited efficacy and carry the potential for problematic adverse effects. There is an immense need to develop new therapeutic interventions in epilepsy, and targeting areas outside the seizure focus for neuromodulation has shown therapeutic value. While not traditionally associated with epilepsy, anatomical, clinical, and electrophysiological studies suggest the cerebellum can play a role in seizure networks, and importantly, may be a potential therapeutic target for seizure control. However, previous interventions targeting the cerebellum in both preclinical and clinical studies have produced mixed effects on seizures. These inconsistent results may be due in part to the lack of specificity inherent with open-loop electrical stimulation interventions. More recent studies, using more targeted closed-loop optogenetic approaches, suggest the possibility of robust seizure inhibition via cerebellar modulation for a range of seizure types. Therefore, while the mechanisms of cerebellar inhibition of seizures have yet to be fully elucidated, the cerebellum should be thoroughly revisited as a potential target for therapeutic intervention in epilepsy. This article is part of the Special Issue "NEWroscience 2018.


Subject(s)
Deep Brain Stimulation , Epilepsy , Cerebellum , Electric Stimulation , Epilepsy/therapy , Humans , Seizures/therapy
7.
J Physiol ; 598(1): 171-187, 2020 01.
Article in English | MEDLINE | ID: mdl-31682010

ABSTRACT

KEY POINTS: On-demand optogenetic inhibition of glutamatergic neurons in the fastigial nucleus of the cerebellum does not alter hippocampal seizures in a mouse model of temporal lobe epilepsy. In contrast, on-demand optogenetic excitation of glutamatergic neurons in the fastigial nucleus successfully inhibits hippocampal seizures. With this approach, even a single 50 ms pulse of light is able to significantly inhibit seizures. On-demand optogenetic excitation of glutamatergic fastigial neurons either ipsilateral or contralateral to the seizure focus is able to inhibit seizures. Selective excitation of glutamatergic nuclear neurons provides greater seizure inhibition than broadly exciting nuclear neurons without cell-type specificity. ABSTRACT: Temporal lobe epilepsy is the most common form of epilepsy in adults, but current treatment options provide limited efficacy, leaving as many as one-third of patients with uncontrolled seizures. Recently, attention has shifted towards more closed-loop therapies for seizure control, and on-demand optogenetic modulation of the cerebellar cortex was shown to be highly effective at attenuating hippocampal seizures. Intriguingly, both optogenetic excitation and inhibition of cerebellar cortical output neurons, Purkinje cells, attenuated seizures. The mechanisms by which the cerebellum impacts seizures, however, are unknown. In the present study, we targeted the immediate downstream projection of vermal Purkinje cells - the fastigial nucleus - in order to determine whether increases and/or decreases in fastigial output can underlie seizure cessation. Though Purkinje cell input to fastigial neurons is inhibitory, direct optogenetic inhibition of the fastigial nucleus had no effect on seizure duration. Conversely, however, fastigial excitation robustly attenuated hippocampal seizures. Seizure cessation was achieved at multiple stimulation frequencies, regardless of laterality relative to seizure focus, and even with single light pulses. Seizure inhibition was greater when selectively targeting glutamatergic fastigial neurons than when an approach that lacked cell-type specificity was used. Together, these results suggest that stimulating excitatory neurons in the fastigial nucleus may be a promising approach for therapeutic intervention in temporal lobe epilepsy.


Subject(s)
Cerebellar Nuclei/physiopathology , Epilepsy, Temporal Lobe/prevention & control , Optogenetics , Seizures/prevention & control , Animals , Disease Models, Animal , Epilepsy, Temporal Lobe/physiopathology , Female , Male , Mice , Mice, Inbred C57BL , Temporal Lobe/physiopathology
8.
Neuroscientist ; 25(3): 241-257, 2019 06.
Article in English | MEDLINE | ID: mdl-29985093

ABSTRACT

Fundamental for understanding cerebellar function is determining the representations in Purkinje cell activity, the sole output of the cerebellar cortex. Up to the present, the most accurate descriptions of the information encoded by Purkinje cells were obtained in the context of motor behavior and reveal a high degree of heterogeneity of kinematic and performance error signals encoded. The most productive framework for organizing Purkinje cell firing representations is provided by the forward internal model hypothesis. Direct tests of this hypothesis show that individual Purkinje cells encode two different forward models simultaneously, one for effector kinematics and one for task performance. Newer results demonstrate that the timing of simple spike encoding of motor parameters spans an extend interval of up to ±2 seconds. Furthermore, complex spike discharge is not limited to signaling errors, can be predictive, and dynamically controls the information in the simple spike firing to meet the demands of upcoming behavior. These rich, diverse, and changing representations highlight the integrative aspects of cerebellar function and offer the opportunity to generalize the cerebellar computational framework over both motor and non-motor domains.


Subject(s)
Movement , Psychomotor Performance , Purkinje Cells/physiology , Action Potentials , Animals , Biomechanical Phenomena , Feedback, Physiological , Humans , Models, Neurological
9.
Cerebellum ; 17(6): 735-746, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29982917

ABSTRACT

The climbing fiber-Purkinje cell circuit is one of the most powerful and highly conserved in the central nervous system. Climbing fibers exert a powerful excitatory action that results in a complex spike in Purkinje cells and normal functioning of the cerebellum depends on the integrity of climbing fiber-Purkinje cell synapse. Over the last 50 years, multiple hypotheses have been put forward on the role of the climbing fibers and complex spikes in cerebellar information processing and motor control. Central to these theories is the nature of the interaction between the low-frequency complex spike discharge and the high-frequency simple spike firing of Purkinje cells. This review examines the major hypotheses surrounding the action of the climbing fiber-Purkinje cell projection, discussing both supporting and conflicting findings. The review describes newer findings establishing that climbing fibers and complex spikes provide predictive signals about movement parameters and that climbing fiber input controls the encoding of behavioral information in the simple spike firing of Purkinje cells. Finally, we propose the dynamic encoding hypothesis for complex spike function that strives to integrate established and newer findings.


Subject(s)
Action Potentials/physiology , Olivary Nucleus/physiology , Purkinje Cells/physiology , Animals , Models, Neurological , Motor Activity/physiology
10.
Nat Commun ; 9(1): 1099, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29545572

ABSTRACT

It is hypothesized that the cerebellum implements a forward internal model that transforms motor commands into predictions about upcoming movements. The predictions are compared with sensory feedback to generate sensory prediction errors critical to controlling movements. The simple spike firing of cerebellar Purkinje cells both lead and lag movement consistent with representations of motor predictions and sensory feedback. This study tests whether this leading and lagging modulation provides the prediction and sensory feedback necessary to compute sensory prediction errors. Two manipulations of the visual feedback are used in rhesus monkeys performing pseudo-random tracking. Consistent with a forward model, delaying the visual feedback demonstrates that the leading simple spike modulation with position error is time-locked to the hand movement. Reducing the feedback shows that the lagged modulation is directly driven by visual inputs. Therefore, Purkinje cell discharge carries both the motor predictions and sensory feedback required of a forward internal model.


Subject(s)
Feedback, Sensory/physiology , Purkinje Cells/metabolism , Visual Perception/physiology , Animals , Female , Macaca mulatta , Male
11.
J Neurophysiol ; 118(3): 1888-1902, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28701537

ABSTRACT

Requisite for understanding cerebellar function is a complete characterization of the signals provided by complex spike (CS) discharge of Purkinje cells, the output neurons of the cerebellar cortex. Numerous studies have provided insights into CS function, with the most predominant view being that they are evoked by error events. However, several reports suggest that CSs encode other aspects of movements and do not always respond to errors or unexpected perturbations. Here, we evaluated CS firing during a pseudo-random manual tracking task in the monkey (Macaca mulatta). This task provides extensive coverage of the work space and relative independence of movement parameters, delivering a robust data set to assess the signals that activate climbing fibers. Using reverse correlation, we determined feedforward and feedback CSs firing probability maps with position, velocity, and acceleration, as well as position error, a measure of tracking performance. The direction and magnitude of the CS modulation were quantified using linear regression analysis. The major findings are that CSs significantly encode all three kinematic parameters and position error, with acceleration modulation particularly common. The modulation is not related to "events," either for position error or kinematics. Instead, CSs are spatially tuned and provide a linear representation of each parameter evaluated. The CS modulation is largely predictive. Similar analyses show that the simple spike firing is modulated by the same parameters as the CSs. Therefore, CSs carry a broader array of signals than previously described and argue for climbing fiber input having a prominent role in online motor control.NEW & NOTEWORTHY This article demonstrates that complex spike (CS) discharge of cerebellar Purkinje cells encodes multiple parameters of movement, including motor errors and kinematics. The CS firing is not driven by error or kinematic events; instead it provides a linear representation of each parameter. In contrast with the view that CSs carry feedback signals, the CSs are predominantly predictive of upcoming position errors and kinematics. Therefore, climbing fibers carry multiple and predictive signals for online motor control.


Subject(s)
Movement , Purkinje Cells/physiology , Action Potentials , Animals , Biomechanical Phenomena , Female , Macaca mulatta , Male , Motor Skills , Task Performance and Analysis
12.
eNeuro ; 4(2)2017.
Article in English | MEDLINE | ID: mdl-28413823

ABSTRACT

Most hypotheses of cerebellar function emphasize a role in real-time control of movements. However, the cerebellum's use of current information to adjust future movements and its involvement in sequencing, working memory, and attention argues for predicting and maintaining information over extended time windows. The present study examines the time course of Purkinje cell discharge modulation in the monkey (Macaca mulatta) during manual, pseudo-random tracking. Analysis of the simple spike firing from 183 Purkinje cells during tracking reveals modulation up to 2 s before and after kinematics and position error. Modulation significance was assessed against trial shuffled firing, which decoupled simple spike activity from behavior and abolished long-range encoding while preserving data statistics. Position, velocity, and position errors have the most frequent and strongest long-range feedforward and feedback modulations, with less common, weaker long-term correlations for speed and radial error. Position, velocity, and position errors can be decoded from the population simple spike firing with considerable accuracy for even the longest predictive (-2000 to -1500 ms) and feedback (1500 to 2000 ms) epochs. Separate analysis of the simple spike firing in the initial hold period preceding tracking shows similar long-range feedforward encoding of the upcoming movement and in the final hold period feedback encoding of the just completed movement, respectively. Complex spike analysis reveals little long-term modulation with behavior. We conclude that Purkinje cell simple spike discharge includes short- and long-range representations of both upcoming and preceding behavior that could underlie cerebellar involvement in error correction, working memory, and sequencing.


Subject(s)
Action Potentials/physiology , Cerebellum/cytology , Feedback, Physiological/physiology , Movement/physiology , Purkinje Cells/physiology , Animals , Biomechanical Phenomena , Brain Mapping , Female , Linear Models , Macaca mulatta , Male , Psychomotor Performance/physiology , Time Factors
13.
J Neurosci ; 37(8): 1997-2009, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28077726

ABSTRACT

A crucial issue in understanding cerebellar function is the interaction between simple spike (SS) and complex spike (CS) discharge, the two fundamentally different activity modalities of Purkinje cells. Although several hypotheses have provided insights into the interaction, none fully explains or is completely consistent with the spectrum of experimental observations. Here, we show that during a pseudo-random manual tracking task in the monkey (Macaca mulatta), climbing fiber discharge dynamically controls the information present in the SS firing, triggering robust and rapid changes in the SS encoding of motor signals in 67% of Purkinje cells. The changes in encoding, tightly coupled to CS occurrences, consist of either increases or decreases in the SS sensitivity to kinematics or position errors and are not due to differences in SS firing rates or variability. Nor are the changes in sensitivity due to CS rhythmicity. In addition, the CS-coupled changes in encoding are not evoked by changes in kinematics or position errors. Instead, CS discharge most often leads alterations in behavior. Increases in SS encoding of a kinematic parameter are associated with larger changes in that parameter than are decreases in SS encoding. Increases in SS encoding of position error are followed by and scale with decreases in error. The results suggest a novel function of CSs, in which climbing fiber input dynamically controls the state of Purkinje cell SS encoding in advance of changes in behavior.SIGNIFICANCE STATEMENT Purkinje cells, the sole output of the cerebellar cortex, manifest two fundamentally different activity modalities, complex spike (CS) discharge and simple spike (SS) firing. Elucidating cerebellar function will require an understanding of the interactions, both short- and long-term, between CS and SS firing. This study shows that CSs dynamically control the information encoded in a Purkinje cell's SS activity by rapidly increasing or decreasing the SS sensitivity to kinematics and/or performance errors independent of firing rate. In many cases, the CS-coupled shift in SS encoding leads a change in behavior. These novel findings on the interaction between CS and SS firing provide for a new hypothesis in which climbing fiber input adjusts the encoding of SS information in advance of a change in behavior.


Subject(s)
Action Potentials/physiology , Afferent Pathways/physiology , Cerebellum/cytology , Parietal Lobe/physiology , Psychomotor Performance/physiology , Purkinje Cells/physiology , Animals , Biomechanical Phenomena , Female , Macaca mulatta , Male , Movement/physiology , Nerve Fibers/physiology , Regression Analysis , Time Factors
14.
Cerebellum ; 15(2): 93-103, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26112422

ABSTRACT

The cerebellum is essential for error-driven motor learning and is strongly implicated in detecting and correcting for motor errors. Therefore, elucidating how motor errors are represented in the cerebellum is essential in understanding cerebellar function, in general, and its role in motor learning, in particular. This review examines how motor errors are encoded in the cerebellar cortex in the context of a forward internal model that generates predictions about the upcoming movement and drives learning and adaptation. In this framework, sensory prediction errors, defined as the discrepancy between the predicted consequences of motor commands and the sensory feedback, are crucial for both on-line movement control and motor learning. While many studies support the dominant view that motor errors are encoded in the complex spike discharge of Purkinje cells, others have failed to relate complex spike activity with errors. Given these limitations, we review recent findings in the monkey showing that complex spike modulation is not necessarily required for motor learning or for simple spike adaptation. Also, new results demonstrate that the simple spike discharge provides continuous error signals that both lead and lag the actual movements in time, suggesting errors are encoded as both an internal prediction of motor commands and the actual sensory feedback. These dual error representations have opposing effects on simple spike discharge, consistent with the signals needed to generate sensory prediction errors used to update a forward internal model.


Subject(s)
Cerebellum/physiology , Feedback, Sensory/physiology , Learning/physiology , Motor Activity/physiology , Movement/physiology , Psychomotor Performance/physiology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...