Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37514579

ABSTRACT

New designs based on S0 Lamb modes in AlN thin layer resonating structures coupled with the implementation of structural elements in SiO2, are theoretically analyzed by the Finite Element Method (FEM). This study compares the typical characteristics of different interdigital transducer (IDTs) configurations, involving either a continuous SiO2 cap layer, or structured SiO2 elements, showing their performance in the usual terms of electromechanical coupling coefficient (K2), phase velocity, and temperature coefficient of frequency (TCF), by varying structural parameters and boundary conditions. This paper shows how to reach temperature-compensated, high-performance resonator structures based on ribbon-structured SiO2 capping. The addition of a thin diamond layer can also improve the velocity and electromechanical coupling coefficient, while keeping zero TCF and increasing the solidity of the membranes. Beyond the increase in performance allowed by such resonator configurations, their inherent structure shows additional benefits in terms of passivation, which makes them particularly relevant for sensing applications in stern environments.

2.
Sensors (Basel) ; 20(16)2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32824582

ABSTRACT

Scandium aluminum nitride (ScxAl1-xN) films are currently intensively studied for surface acoustic waves (SAW) filters and sensors applications, because of the excellent tradeoff they present between high SAW velocity, large piezoelectric properties and wide bandgap for the intermediate compositions with an Sc content between 10 and 20%. In this paper, the growth of Sc0.09Al0.91N and Sc0.18Al0.82N films on sapphire substrates by sputtering method is investigated. The plasma parameters were optimized, according to the film composition, in order to obtain highly-oriented films. X-ray diffraction rocking-curve measurements show a full width at half maximum below 1.5°. Moreover, high-resolution transmission electron microscopy investigations reveal the epitaxial nature of the growth. Electrical characterizations of the Sc0.09Al0.91N/sapphire-based SAW devices show three identified modes. Numerical investigations demonstrate that the intermediate compositions between 10 and 20% of scandium allow for the achievement of SAW devices with an electromechanical coupling coefficient up to 2%, provided the film is combined with electrodes constituted by a metal with a high density.

3.
Article in English | MEDLINE | ID: mdl-31545720

ABSTRACT

Remote interrogation of surface acoustic wave identification tag (ID-tags) imposes a high signal amplitude which is related to a high coupling coefficient value ( K2 ) and low propagation losses ( α ). In this article, we propose and discuss an alternative configuration to the standard one. Here, we replaced the conventional configuration, i.e., one interdigital transducer (IDT) and several reflectors, by a series of electrically connected IDTs. The goal is to increase the amplitude of the detected signal using direct transmission between IDTs instead of the reflection from passive reflectors. This concept can, therefore, increase the interrogation scope of ID-tags made on a conventional substrate with high K2 value. Moreover, it can also be extended to suitable substrates for harsh environments, such as high-temperature environments: the materials used exhibit limited performances (low K2 value and relatively high propagation losses) and are, therefore, rarely used for identification applications. The concept was first tested and validated using the lithium niobate 128° Y-X cut substrate, which is commonly used in ID-tags. A good agreement between experimental and numerical results was obtained for the promising concept of connected IDTs. The interesting features of the structure were also validated using a langasite substrate, which is well-known to operate at very high temperatures. Performances of both substrates (lithium niobate and langasite) were tested with an in situ RF characterization up to 600 °C. Unexpected results regarding the resilience of devices based on congruent lithium niobate were obtained.

4.
Article in English | MEDLINE | ID: mdl-29733288

ABSTRACT

Polydimethylsiloxane (PDMS) and other related silicon-based polymers are among the most widely employed elastomeric materials in microsystems, owing to their physical and chemical properties. Meanwhile, surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors and filters have been vastly explored for sensing and wireless applications. Many fields could benefit from the combined use of acoustic wave devices, and polydimethylsiloxane-based soft-substrates, microsystems, or packaging elements. The mechanical constants of PDMS strongly depend on frequency, similar to rubber materials. This brings to the exploration of the specific mechanical properties of PDMS encountered at high frequency, required for its exploitation in SAW or BAW devices. First, low-frequency mechanical behavior is confirmed from stress strain measurements, remaining useful for the exploitation of PDMS as a soft substrate or packaging material. The study, then, proposes a temperature-dependent, high-frequency mechanical study of PDMS based on Brillouin spectroscopy to determine the evolution of the longitudinal acoustic velocity in this material, which constitutes the main mechanical parameter for the design of acoustic wave devices. The PDMS glass transition is then retrieved by differential scanning calorimetry in order to confirm the observations made by Brillouin spectroscopy. This paper validates Brillouin spectroscopy as a very suitable characterization technique for the retrieval of longitudinal mechanical properties at low temperature, as a preliminary investigation for the design of acoustic wave devices coupled with soft materials.

5.
IEEE Trans Haptics ; 3(2): 88-97, 2010.
Article in English | MEDLINE | ID: mdl-27788116

ABSTRACT

Highly efficient tactile display devices must fulfill technical requirements for tactile stimulation, all the while preserving the lightness and compactness needed for handheld operation. This paper focuses on the elaboration of highly integrated magnetic microactuators for tactile display devices. FEM simulation, conception, fabrication, and characterization of these microactuators are presented in this paper. The current demonstrator offers a 4 × 4 flexible microactuator array with a resolution of 2 mm. Each actuator is composed of a Poly (Dimethyl-Siloxane) (PDMS) elastomeric membrane, magnetically actuated by coil-magnet interaction. It represents a proof of concept for fully integrated MEMS tactile devices, with fair actuation forces provided for a power consumption up to 100 mW per microactuator. The prototypes are destined to provide both static and dynamic tactile sensations, with an optimized membrane geometry for actuation frequencies between DC and 350 Hz. On the basis of preliminary experiments, this display device can offer skin stimulations for various tactile stimuli for applications in the fields of Virtual Reality or Human-Computer Interaction (HCI). Moreover, the elastomeric material used in this device and its global compactness offer great advantages in matter of comfort of use and capabilities of integration in haptic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...