Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796643

ABSTRACT

Pharmacological treatment of psychiatric disorders remains challenging in clinical, pharmacological, and scientific practice. Even if many different substances are established for treating different psychiatric conditions, subgroups of patients show only small or no response to the treatment. The neuroinflammatory hypothesis of the genesis of psychiatric disorders might explain underlying mechanisms in these non-responders. For that reason, recent research focus on neuroinflammatory processes and oxidative stress as possible causes of psychiatric disorders. G-protein coupled receptors (GPCRs) form the biggest superfamily of membrane-bound receptors and are already well known as pharmacological targets in various diseases. The G-protein coupled receptor 55 (GPR55), a receptor considered part of the endocannabinoid system, reveals promising modulation of neuroinflammatory and oxidative processes. Different agonists and antagonists reduce pro-inflammatory cytokine release, enhance the synthesis of anti-inflammatory mediators, and protect cells from oxidative damage. For this reason, GPR55 ligands might be promising compounds in treating subgroups of patients suffering from psychiatric disorders related to neuroinflammation or oxidative stress. New approaches in drug design might lead to new compounds targeting different pathomechanisms of those disorders in just one molecule.

2.
Molecules ; 27(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35164047

ABSTRACT

Plant-derived products have been used since the beginnings of human history to treat various pathological conditions. Practical experience as well as a growing body of research suggests the benefits of the use of turmeric (Curcuma longa) and some of its active components in the reduction of oxidative stress, a mechanism leading to neurodegeneration. In this current study, we investigated the effects of a preparation of Curcuma longa, and its constituents curcumin, tetrahydrocurcumin, and curcumenol, in one of the molecular pathways leading to oxidative stress, which is the release of NO, a free radical involved in stress conditions, using the BV2 microglial cell line. The concentration-dependent reduction of NO is linked to reduced amounts of iNOS protein- and mRNA-synthesis and is possibly mediated by the phosphorylation of mitogen-activated protein kinases (MAPK) such as p42/44 or p38 MAPK. Therefore, the use of turmeric extract is a promising therapeutic option for diseases linked to the dysregulation of oxidative stress, with fewer side-effects in comparison to the currently used pharmacotherapeutics.


Subject(s)
Antioxidants/pharmacology , Curcuma/chemistry , Microglia/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide/metabolism , Plant Extracts/pharmacology , RNA, Messenger/biosynthesis , Animals , Humans , Oxidation-Reduction
3.
Int J Mol Sci ; 23(2)2022 Jan 16.
Article in English | MEDLINE | ID: mdl-35055142

ABSTRACT

Anti-neuroinflammatory treatment has gained importance in the search for pharmacological treatments of different neurological and psychiatric diseases, such as depression, schizophrenia, Parkinson's disease, and Alzheimer's disease. Clinical studies demonstrate a reduction of the mentioned diseases' symptoms after the administration of anti-inflammatory drugs. Novel coumarin derivates have been shown to elicit anti-neuroinflammatory effects via G-protein coupled receptor GPR55, with possibly reduced side-effects compared to the known anti-inflammatory drugs. In this study, we, therefore, evaluated the anti-inflammatory capacities of the two novel coumarin-based compounds, KIT C and KIT H, in human neuroblastoma cells and primary murine microglia. Both compounds reduced PGE2-concentrations likely via the inhibition of COX-2 synthesis in SK-N-SH cells but only KIT C decreased PGE2-levels in primary microglia. The examination of other pro- and anti-inflammatory parameters showed varying effects of both compounds. Therefore, the differences in the effects of KIT C and KIT H might be explained by functional selectivity as well as tissue- or cell-dependent expression and signal pathways coupled to GPR55. Understanding the role of chemical residues in functional selectivity and specific cell- and tissue-targeting might open new therapeutic options in pharmacological drug development and might improve the treatment of the mentioned diseases by intervening in an early step of their pathogenesis.


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Coumarins/chemical synthesis , Microglia/cytology , Neurons/cytology , Receptors, Cannabinoid/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Coumarins/chemistry , Coumarins/pharmacology , Dinoprostone/metabolism , Humans , Mice , Microglia/drug effects , Microglia/metabolism , Neurons/drug effects , Neurons/metabolism , Organ Specificity , Primary Cell Culture
4.
Front Pharmacol ; 12: 789074, 2021.
Article in English | MEDLINE | ID: mdl-34867421

ABSTRACT

An emerging number of studies address the involvement of neuroinflammation and oxidative stress in the pathophysiology of central nervous system (CNS) disorders such as depression, schizophrenia, anxiety, and neurodegenerative diseases. Different cytokines and molecules, such as prostaglandin (PG) E2, are associated with neuroinflammatory processes. The active acetaminophen metabolite AM404 has been shown to prevent inflammation and neuroinflammation in primary microglia and organotypic hippocampal slice cultures. However, its effects on pathophysiological conditions in the CNS and especially on neurons are still poorly understood. In this study, we therefore evaluated the effects of AM404 and acetaminophen on the arachidonic acid cascade and oxidative stress induced by interleukin (IL)-1ß in human SK-N-SH neuronal cells. We observed that AM404 and acetaminophen significantly and concentration-dependent inhibited IL-1ß-induced release of PGE2, independent of cyclooxygenases (COX)-1 and COX-2 enzymatic activity as well as COX-2 mRNA and protein levels in SK-N-SH-cells. The reduction of IL-1ß-induced PGE2-release by AM404 and acetaminophen treatment might be mediated by the 8-iso-PGF2α pathway since IL-1ß-induced synthesis of this free radical marker is dose-dependently reduced by both compounds, respectively. Therefore, understanding of the potential therapeutic properties of AM404 in neuroinflammation and oxidative stress might lead to future treatment options of different neurological disorders.

5.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34769094

ABSTRACT

Oxidative stress is associated with different neurological and psychiatric diseases. Therefore, development of new pharmaceuticals targeting oxidative dysregulation might be a promising approach to treat these diseases. The G-protein coupled receptor 55 (GPR55) is broadly expressed in central nervous tissues and cells and is involved in the regulation of inflammatory and oxidative cell homeostasis. We have recently shown that coumarin-based compounds enfold inverse agonistic activities at GPR55 resulting in the inhibition of prostaglandin E2. However, the antioxidative effects mediated by GPR55 were not evaluated yet. Therefore, we investigated the antioxidative effects of two novel synthesized coumarin-based compounds, KIT C and KIT H, in primary mouse microglial and human neuronal SK-N-SK cells. KIT C and KIT H show antioxidative properties in SK-N-SH cells as well as in primary microglia. In GPR55-knockout SK-N-SH cells, the antioxidative effects are abolished, suggesting a GPR55-dependent antioxidative mechanism. Since inverse agonistic GPR55 activation in the brain seems to be associated with decreased oxidative stress, KIT C and KIT H possibly act as inverse agonists of GPR55 eliciting promising therapeutic options for oxidative stress related diseases.


Subject(s)
Coumarins/chemistry , Oxidative Stress/drug effects , Receptors, Cannabinoid/chemistry , Cell Line , Coumarins/pharmacology , Drug Evaluation, Preclinical , Drug Inverse Agonism , Humans , Primary Cell Culture
SELECTION OF CITATIONS
SEARCH DETAIL
...