Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
River Res Appl ; 40(3): 411-424, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-39027114

ABSTRACT

The tolerance of aquatic organisms to stressors is widely used to monitor and evaluate the condition of freshwater ecosystems. Tolerance values (TV) derived from analyses of the relationship between species and their environment are considered to be more objective than those that rely on expert opinion. We used principal component analysis (PCA) to derive a generalized stressor gradient based on physicochemical characteristics and physical habitat quality and structure. Scores of the first principal component axis (PC1) were used to estimate TV for 37 fish species collected from 54 sites in the Karun River basin, Iran. PCA of 17 variables identified stressors that were influential such as total phosphate, total nitrogen, total coliform, and habitat and morphological score. The species were separated into three categories on the stressor gradient: sensitive (18.9%), semi-tolerant (48.6%), and tolerant species (32.4%). Based on these results we developed the Karun Fish Tolerance Index (KFTI) and demonstrated that it performed well in separating the least, moderate, and most disturbed sites in the study area. The discrimination efficiency of the KFTI was 82.5%, which makes it a robust management tool for the protection and conservation of streams and rivers in the Karun River watershed. TV developed here reflect objective characteristics of the sensitivity of fish species to the predominant stressors in the Karun and similar systems.

2.
Sci Total Environ ; 918: 170360, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38311088

ABSTRACT

Monitoring programs at sub-national and national scales lack coordination, harmonization, and systematic review and analysis at continental and global scales, and thus fail to adequately assess and evaluate drivers of biodiversity and ecosystem degradation and loss at large spatial scales. Here we review the state of the art, gaps and challenges in the freshwater assessment programs for both the biological condition (bioassessment) and biodiversity monitoring of freshwater ecosystems using the benthic macroinvertebrate community. To assess the existence of nationally- and regionally- (sub-nationally-) accepted freshwater benthic macroinvertebrate protocols that are put in practice/used in each country, we conducted a survey from November 2022 to May 2023. Responses from 110 respondents based in 67 countries were received. Although the responses varied in their consistency, the responses clearly demonstrated a lack of biodiversity monitoring being done at both national and sub-national levels for lakes, rivers and artificial waterbodies. Programs for bioassessment were more widespread, and in some cases even harmonized among several countries. We identified 20 gaps and challenges, which we classed into five major categories, these being (a) field sampling, (b) sample processing and identification, (c) metrics and indices, (d) assessment, and (e) other gaps and challenges. Above all, we identify the lack of harmonization as one of the most important gaps, hindering efficient collaboration and communication. We identify the IUCN SSC Global Freshwater Macroinvertebrate Sampling Protocols Task Force (GLOSAM) as a means to address the lack of globally-harmonized biodiversity monitoring and biological assessment protocols.


Subject(s)
Ecosystem , Invertebrates , Animals , Environmental Monitoring/methods , Biodiversity , Rivers , Lakes
3.
Environ Monit Assess ; 194(7): 504, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35705725

ABSTRACT

Water quality indices use biological, chemical, and physical data and information to classify the condition of surface waters, ultimately contributing to their management. We used multicollinearity and principal components analyses to develop the Revised Iranian Water Quality Index (RIWQI) as an indicator of agricultural and urban effects in the Karun River Basin of southwestern Iran. Seasonal sampling and analysis of water quality parameters from 54 sites across 18 rivers of the Karun River Basin include fecal coliform, total dissolved solid, phosphate, biological and chemical oxygen demand, nitrate, dissolved oxygen saturation, turbidity, pH, and water temperature. This study updates the previous version of Iranian Water Quality Index (IWQI) by differentially weighting individual variables, refining the main sub-indices, adding phosphate (PO4-), biological oxygen demand (BOD), chemical oxygen demand (COD), and temperature (T), and improving the aggregation calculation. Sensitivity testing of the RIWQI resulted in a mean value for discrimination efficiency (DE) > 85.6%, the highest of other indices calculated with the same dataset.


Subject(s)
Water Pollutants, Chemical , Water Quality , Environmental Monitoring/methods , Iran , Phosphates/analysis , Rivers , Water Pollutants, Chemical/analysis
4.
Environ Monit Assess ; 194(6): 421, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35543765

ABSTRACT

The most robust approach to ecological monitoring and assessment is the use of regionally calibrated indicators. These should be calculated based on collocated biological (response) and physicochemical (stressor) variables and an objective rating and scoring system. In developing countries, a frequent lack of financial and technical resources for monitoring has led to many environmental problems being overlooked, such as the degradation of streams, rivers, and watersheds. In this paper, we propose the Karun Macroinvertebrate Tolerance Index (KMTI) for application to rivers in the Karun River basin, which is the largest watershed in Iran, draining semi-arid mountainous regions. The KMTI is the first biological index specifically developed and calibrated for Iranian water resources. Benthic macroinvertebrates, physical habitat, hydromorphic, and water quality data were collected and measured at 54 sites across four seasons in 2018 and 2019. A total of 101 families of benthic macroinvertebrates belonging to eight classes and 21 orders were identified, and tolerance values were determined for 95 families. The KMTI was found to be most efficient in identifying ecological degradation when data were used from winter samples with a discrimination efficiency (DE) 90% and a four-season mean of 84.3%. Also, the best DE of the water quality classification table based on the KMTI index was equal to 86.9%.


Subject(s)
Invertebrates , Rivers , Animals , Ecosystem , Environmental Monitoring , Iran , Water Quality
5.
Limnologica ; 91: 1-13, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34898730

ABSTRACT

A physical, chemical and biological characterization of river systems is needed to evaluate their ecological quality and support restoration programs. Herein, we describe an approach using water chemistry, physical structure and land use for identification of a disturbance gradient existing in the Karun River Basin. For this purpose, at each site, physical structure and physico-chemical data were collected once in each season for a total of 4 samples during the period (October 2018 - September 2019). Principal components analysis (PCA) of 17 variables identified five variables that were influential across all seasons: conductivity, total habitat score, stream morphology, clay & silt, and sand. Of the 54 sites, 14, 26 and 14 sites were classified as least, moderate and most disturbed sites, respectively. The metric Ephemeroptera, Plecoptera and Trichoptera (EPT) taxa was used for validation of the classification. Results in different seasons showed that all the least disturbed sites (n=14) were significantly different from moderate and most disturbed sites (p < 0.01). In this study the validation process presented a good confirmation of a priori reference sites selection process, showing that the proposed criteria could be considered as appropriate tools for characterization of the existent disturbance gradient in the Karun River Basin.

6.
PLoS One ; 15(11): e0241933, 2020.
Article in English | MEDLINE | ID: mdl-33180842

ABSTRACT

Biological nomenclature is the entry point to a wealth of information related to or associated with living entities. When applied accurately and consistently, communication between and among researchers and investigators is enhanced, leading to advancements in understanding and progress in research programs. Based on freshwater benthic macroinvertebrate taxonomic identifications, inter-laboratory comparisons of >900 samples taken from rivers, streams, and lakes across the U.S., including the Great Lakes, provided data on taxon-specific error rates. Using the error rates in combination with frequency of observation (FREQ; as a surrogate for rarity), six uncertainty/frequency classes (UFC) are proposed for approximately 1,000 taxa. The UFC, error rates, FREQ each are potentially useful for additional analyses related to interpreting biological assessment results and/or stressor response relationships, as weighting factors for various aspects of ecological condition or biodiversity analyses and helping set direction for taxonomic research and refining identification tools.


Subject(s)
Invertebrates/classification , Invertebrates/physiology , Animals , Biodiversity , Ecosystem , Environmental Monitoring/methods , Fresh Water , Rivers
7.
Environ Monit Assess ; 184(4): 2247-60, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21611845

ABSTRACT

Many organizations in the USA collect aquatic bioassessment data using different sampling and analysis methods, most of which have unknown performance in terms of data quality produced. Thus, the comparability of bioassessments produced by different organizations is often unknown, ultimately affecting our ability to make comprehensive assessments on large spatial scales. We evaluated a pilot approach for determining bioassessment performance using macroinvertebrate data obtained from several states in the Southeastern USA. Performance measures evaluated included precision, sensitivity, and responsiveness to a human disturbance gradient, defined in terms of a land disturbance index value for each site, combined with a value for specific conductance, and instream habitat quality. A key finding of this study is the need to harmonize ecoregional reference conditions among states so as to yield more comparable and consistent bioassessment results. Our approach was also capable of identifying potential areas for refinement such as reevaluation of less precise, sensitive, or responsive metrics that may result in suboptimal index performance. Higher performing bioassessments can yield information beyond "impaired" versus "unimpaired" condition. Acknowledging the limitations of this pilot study, we would recommend that performance evaluations use at least 50 sites, 10 of which are ecoregional reference sites. Efforts should be made to obtain data from the entire human disturbance gradient in an ecoregion to improve statistical confidence in performance measures. Having too few sites will result in an under-representation of certain parts of the disturbance gradient (e.g., too few poor quality sites), which may bias sensitivity and responsiveness estimates.


Subject(s)
Environmental Monitoring/standards , Water Pollution/analysis , Environmental Monitoring/methods , Pilot Projects , Reproducibility of Results , Sampling Studies , Southeastern United States
8.
Integr Environ Assess Manag ; 4(4): 456-70, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18597571

ABSTRACT

The types and quality of data needed to determine relationships between chronic whole effluent toxicity (WET) test results and in-stream biological condition were evaluated using information collected over a 1.5-y period from 6 different sites across the United States. A data-quality-objectives approach was used that included several proposed measurement quality objectives (MQOs) that specified desired precision, bias, and sensitivity of methods used. The 6 facilities used in this study (4 eastern and 2 western United States) all had design effluent concentrations >60% of the stream flow. In addition to at least quarterly chronic Ceriodaphnia dubia, Pimephales promelas (fathead minnow), and Selenastrum capricornutum (green algae) WET tests, other tests were conducted to address MQOs, including splits, duplicates, and blind positive and negative controls. Macroinvertebrate, fish, and periphyton bioassessments were conducted at multiple locations upstream and downstream of each facility. The test acceptance criteria of the US Environmental Protection Agency (USEPA) were met for most WET tests; however, this study demonstrated the need to incorporate other MQOs (minimum and maximum percent significant difference and performance on blind samples) to ensure accurate interpretation of effluent toxicity. More false positives, higher toxicity, and more "failed" (noncompliant) tests were observed using no-observed-effect concentration (NOEC) as compared to the IC25 endpoint (concentration causing > or =25% decrease in organism response compared to controls). Algae tests often indicated the most effluent toxicity in this study; however, this test was most susceptible to false positives and high interlaboratory variability. Overall, WET test results exhibited few relationships with bioassessment results even when accounting for actual effluent dilution. In general, neither frequency of WET noncompliance nor magnitude of toxicity in tests were significantly related to differences in biological condition upstream and downstream of a discharge. Periphyton assessments were most able to discriminate small changes downstream of the effluent, followed by macroinvertebrates and fish. Although sampling methods were robust, more replicate samples collected upstream and downstream of each facility were needed to increase detection power. In general, macroinvertebrate and periphyton assessments together appeared to be sufficient to address project objectives.


Subject(s)
Toxicity Tests/methods , Water Pollutants/toxicity , Animals , Chlorophyta/drug effects , Cladocera/drug effects , Environmental Monitoring/methods , Pilot Projects , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...