Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Chem ; 58(4): 768-76, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22273565

ABSTRACT

BACKGROUND: The CDC's Lipid Standardization Program established the chromotropic acid (CA) reference measurement procedure (RMP) as the accuracy base for standardization and metrological traceability for triglyceride testing. The CA RMP has several disadvantages, including lack of ruggedness. It uses obsolete instrumentation and hazardous reagents. To overcome these problems the CDC developed an isotope dilution GC-MS (ID-GC-MS) RMP for total glycerides in serum. METHODS: We diluted serum samples with Tris-HCl buffer solution and spiked 200-µL aliquots with [(13)C(3)]-glycerol. These samples were incubated and hydrolyzed under basic conditions. The samples were dried, derivatized with acetic anhydride and pyridine, extracted with ethyl acetate, and analyzed by ID-GC-MS. Linearity, imprecision, and accuracy were evaluated by analyzing calibrator solutions, 10 serum pools, and a standard reference material (SRM 1951b). RESULTS: The calibration response was linear for the range of calibrator concentrations examined (0-1.24 mmol/L) with a slope and intercept of 0.717 (95% CI, 0.7123-0.7225) and 0.3122 (95% CI, 0.3096-0.3140), respectively. The limit of detection was 14.8 µmol/L. The mean %CV for the sample set (serum pools and SRM) was 1.2%. The mean %bias from NIST isotope dilution MS values for SRM 1951b was 0.7%. CONCLUSIONS: This ID-GC-MS RMP has the specificity and ruggedness to accurately quantify total glycerides in the serum pools used in the CDC's Lipid Standardization Program and demonstrates sufficiently acceptable agreement with the NIST primary RMP for total glyceride measurement.


Subject(s)
Triacetin/blood , Calibration , Carbon Isotopes , Gas Chromatography-Mass Spectrometry/standards , Glycerol/blood , Glycerol/standards , Humans , Indicator Dilution Techniques , Reference Standards , Triacetin/standards
2.
Clin Chem ; 57(4): 614-22, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21317273

ABSTRACT

BACKGROUND: Our purpose was to establish a mass spectrometry reference measurement procedure (RMP) for cholesterol to use in the CDC's standardization programs. We explored a gas chromatography-isotope dilution mass spectrometry (GC-IDMS) procedure using a multilevel standard calibration curve to quantify samples with varying cholesterol concentrations. METHODS: We calibrated the mass spectrometry instrument by isotope dilution with a pure primary standard reference material and an isotopically enriched cholesterol analog as the internal standard (IS). We diluted the serum samples with Tris-HCl buffer (pH 7.4, 0.05 mol/L, 0.25% Triton X-100) before analysis. We used 17 serum pools, 10 native samples, and 2 standard reference materials (SRMs). We compared the GC-IDMS measurements with the CDC's modified Abell-Levy-Brodie-Kendall (AK) RMP measurements and assessed method accuracy by analyzing 2 SRMs. We evaluated the procedure for lack of interference by analyzing serum spiked with a mixture of 7 sterols. RESULTS: The mean percent bias between the AK and the GC-IDMS RMP was 1.6% for all samples examined. The mean percent bias from NIST's RMP was 0.5% for the SRMs. The total %CVs for SRM 1951b levels I and II were 0.61 and 0.73%, respectively. We found that none of the sterols investigated interfered with the cholesterol measurement. CONCLUSIONS: The low imprecision, linear response, lack of interferences, and acceptable bias vs the NIST primary RMP qualifies this procedure as an RMP for determining serum cholesterol. The CDC will adopt and implement this GC-IDMS procedure for cholesterol standardization.


Subject(s)
Cholesterol/blood , Gas Chromatography-Mass Spectrometry/methods , Calibration , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...