Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 9(11): 5116-5126, 2013 Nov 12.
Article in English | MEDLINE | ID: mdl-24501589

ABSTRACT

Ceramides are known to be a key component of the stratum corneum, the outermost protective layer of the skin that controls barrier function. In this work, molecular dynamics simulations are used to examine the behavior of ceramide bilayers, focusing on non-hydroxy sphingosine (NS) and non-hydroxy phytosphingosine (NP) ceramides. Here, we propose a modified version of the CHARMM force field for ceramide simulation, which is directly compared to the more commonly used GROMOS-based force field of Berger (Biophys. J. 1997, 72); while both force fields are shown to closely match experiment from a structural standpoint at the physiological temperature of skin, the modified CHARMM force field is better able to capture the thermotropic phase transitions observed in experiment. The role of ceramide chemistry and its impact on structural ordering is examined by comparing ceramide NS to NP, using the validated CHARMM-based force field. These simulations demonstrate that changing from ceramide NS to NP results in changes to the orientation of the OH groups in the lipid headgroups. The arrangement of OH groups perpendicular to the bilayer normal for ceramide NP, verse parallel for NS, results in the formation of a distinct hydrogen bonding network, that is ultimately responsible for shifting the gel-to-liquid phase transition to higher temperature, in direct agreement with experiment.

2.
Langmuir ; 26(11): 8810-20, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20131835

ABSTRACT

Postpolymerization chemical modification ("coloring") of homopolymer brushes made of A units using B chemical moieties produces surface-anchored random copolymers (RCPs) A(1-x)B(x), where x is the degree of "coloring". We employ discontinuous molecular dynamics to study the "coloring" process in macromolecular tethers made of various lengths grafted at low and high densities on flat impenetrable surfaces. We demonstrate that the comonomer distribution in the A(1-x)B(x) RCPs depends on the interplay among (1) the length and the grafting density of the A-based homopolymer anchors, (2) the solubility of the parent homopolymer, and (3) the solubility of the B coloring units. Chemical modification of sparsely spaced chains on the surface leads to nearly random comonomer distribution in the A(1-x)B(x) RCPs regardless of the solubility of A and B. In contrast, the distribution of A and B units in A(1-x)B(x) RCPs prepared from homopolymers tethered at high grafting densities depends on the solubility of the parent homopolymer. Chemical modification of well-solvated A homopolymer grafts results in comonomer distributions that resemble those of diblock copolymers, comprising lightly modified blocks near the surface and heavily "colored" blocks at the top of the grafts. The relative lengths of the two blocks can be tuned by varying the solubility of B. Under poor solvent conditions, the distribution of A and B in the A(1-x)B(x) RCP is more complex; it is governed by the conformation of the parent A macromolecular anchors that form collapsed clusters before the coloring reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...