Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 110(20): 3318-3338.e9, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36265442

ABSTRACT

Brain tissue transcriptomes may be organized into gene coexpression networks, but their underlying biological drivers remain incompletely understood. Here, we undertook a large-scale transcriptomic study using 508 wild-type mouse striatal tissue samples dissected exclusively in the afternoons to define 38 highly reproducible gene coexpression modules. We found that 13 and 11 modules are enriched in cell-type and molecular complex markers, respectively. Importantly, 18 modules are highly enriched in daily rhythmically expressed genes that peak or trough with distinct temporal kinetics, revealing the underlying biology of striatal diurnal gene networks. Moreover, the diurnal coexpression networks are a dominant feature of daytime transcriptomes in the mouse cortex. We next employed the striatal coexpression modules to decipher the striatal transcriptomic signatures from Huntington's disease models and heterozygous null mice for 52 genes, uncovering novel functions for Prkcq and Kdm4b in oligodendrocyte differentiation and bipolar disorder-associated Trank1 in regulating anxiety-like behaviors and nocturnal locomotion.


Subject(s)
Huntington Disease , Transcriptome , Animals , Mice , Protein Kinase C-theta/genetics , Gene Regulatory Networks , Huntington Disease/genetics , Brain
2.
Nat Biotechnol ; 40(10): 1500-1508, 2022 10.
Article in English | MEDLINE | ID: mdl-35654979

ABSTRACT

Therapeutics based on short interfering RNAs (siRNAs) delivered to hepatocytes have been approved, but new delivery solutions are needed to target additional organs. Here we show that conjugation of 2'-O-hexadecyl (C16) to siRNAs enables safe, potent and durable silencing in the central nervous system (CNS), eye and lung in rodents and non-human primates with broad cell type specificity. We show that intrathecally or intracerebroventricularly delivered C16-siRNAs were active across CNS regions and cell types, with sustained RNA interference (RNAi) activity for at least 3 months. Similarly, intravitreal administration to the eye or intranasal administration to the lung resulted in a potent and durable knockdown. The preclinical efficacy of an siRNA targeting the amyloid precursor protein was evaluated through intracerebroventricular dosing in a mouse model of Alzheimer's disease, resulting in amelioration of physiological and behavioral deficits. Altogether, C16 conjugation of siRNAs has the potential for safe therapeutic silencing of target genes outside the liver with infrequent dosing.


Subject(s)
Amyloid beta-Protein Precursor , RNAi Therapeutics , Animals , Mice , Primates/genetics , Primates/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use
3.
Sci Rep ; 10(1): 20295, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33219289

ABSTRACT

In Huntington's disease (HD), the mutant Huntingtin (mHTT) is postulated to mediate template-based aggregation that can propagate across cells. It has been difficult to quantitatively detect such pathological seeding activities in patient biosamples, e.g. cerebrospinal fluids (CSF), and study their correlation with the disease manifestation. Here we developed a cell line expressing a domain-engineered mHTT-exon 1 reporter, which showed remarkably high sensitivity and specificity in detecting mHTT seeding species in HD patient biosamples. We showed that the seeding-competent mHTT species in HD CSF are significantly elevated upon disease onset and with the progression of neuropathological grades. Mechanistically, we showed that mHTT seeding activities in patient CSF could be ameliorated by the overexpression of chaperone DNAJB6 and by antibodies against the polyproline domain of mHTT. Together, our study developed a selective and scalable cell-based tool to investigate mHTT seeding activities in HD CSF, and demonstrated that the CSF mHTT seeding species are significantly associated with certain disease states. This seeding activity can be ameliorated by targeting specific domain or proteostatic pathway of mHTT, providing novel insights into such pathological activities.


Subject(s)
Cerebrospinal Fluid/metabolism , HSP40 Heat-Shock Proteins/metabolism , Huntingtin Protein/metabolism , Huntington Disease/pathology , Molecular Chaperones/metabolism , Nerve Tissue Proteins/metabolism , Protein Aggregation, Pathological/pathology , Adult , Aged , Aged, 80 and over , Brain/pathology , Cell Line , Exons/genetics , Female , Genes, Reporter/genetics , HSP40 Heat-Shock Proteins/genetics , Humans , Huntingtin Protein/cerebrospinal fluid , Huntingtin Protein/genetics , Huntington Disease/cerebrospinal fluid , Huntington Disease/genetics , Intravital Microscopy , Male , Middle Aged , Molecular Chaperones/genetics , Mutation , Nerve Tissue Proteins/genetics , Protein Aggregation, Pathological/cerebrospinal fluid , Protein Aggregation, Pathological/genetics , Protein Domains/genetics , Protein Engineering , Protein Folding
SELECTION OF CITATIONS
SEARCH DETAIL
...