Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Small ; 18(50): e2204392, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36319478

ABSTRACT

Small grain size and near-horizontal grain boundaries are known to be detrimental to the carrier collection efficiency and device performance of pure-sulfide Cu2 ZnSnS4 (CZTS) solar cells. However, forming large grains spanning the absorber layer while maintaining high electronic quality is challenging particularly for pure sulfide CZTS. Herein, a liquid-phase-assisted grain growth (LGG) model that enables the formation of large grains spanning across the CZTS absorber without compromising the electronic quality is demonstrated. By introducing a Ge-alloyed CZTS nanoparticle layer at the bottom of the sputtered precursor, a Cu-rich and Sn-rich liquid phase forms at the high temperature sulfurization stage, which can effectively remove the detrimental near-horizontal grain boundaries and promote grain growth, thus greatly improving the carrier collection efficiency and reducing nonradiative recombination. The remaining liquid phase layer at the rear interface shows a high work function, acting as an effective hole transport layer. The modified morphology greatly increases the short-circuit current density and fill factor, enabling 10.3% efficient green Cd-free CZTS devices. This work unlocks a grain growth mechanism, advancing the morphology control of sulfide-based kesterite solar cells.

2.
Sci Total Environ ; 783: 147052, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34088137

ABSTRACT

This study describes a multivariate statistical model (derived using partial least squares regression, PLS-R) that derives charring intensity (reaction temperature and duration) from the attenuated total reflectance (ATR) Fourier Transform Infrared (FTIR) spectra of charcoal. Data for the model was obtained from a library of charcoal samples produced under laboratory conditions at charring intensities (CI) relevant to wildfires and a series of feedstocks representing common tree species collected from Australia. The PLS-R model developed reveals the potential of FTIR to determine the charring intensity of charcoal. Though limited by the differences between laboratory-produced charcoal and the more heterogeneous and less-structured charcoal produced in a wildfire, the method was tested against fossil charcoal from a well-dated sediment core collected from Thirlmere Lakes National Park, Australia and showed a distinct change in CI that can be related to other climatic and environmental proxies. We suggest that the method has the potential to offer insights into the conditions under which natural charcoal is formed including the modelling of charring intensities of fossil charcoal samples isolated from sediments, archaeological applications or characterisation of contemporary fire events from charcoal in soils.

3.
ACS Omega ; 6(16): 10790-10800, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-34056233

ABSTRACT

Breakdown and utilization of cellulose are critical for the bioenergy sector; however, current cellulose-to-energy conversion schemes often consume large quantities of unrecoverable chemicals, or are expensive, due to the need for enzymes or high temperatures. In this paper, we demonstrate a new method for converting cellulose into soluble compounds using a mixture of Fe2+ and Fe3+ as catalytic centers for the breakdown, yielding Fe3O4 nanoparticles during the hydrothermal process. Iron precursors transformed more than 61% of microcrystalline cellulose into solutes, with the composition of the solute changing with the initial Fe3+ concentration. The primary products of the breakdown of cellulose were a range of aldaric acids with different molecular weights. The nanoparticles have concentration-dependent tuneable sizes between 6.7 and 15.8 nm in diameter. The production of value-added nanomaterials at low temperatures improves upon the economics of traditional cellulose-to-energy conversion schemes with the precursor value increasing rather than deteriorating over time.

4.
ACS Omega ; 6(13): 8829-8836, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33842754

ABSTRACT

The production of graphene films is of importance for the large-scale application of graphene-based materials; however, there is still a lack of an efficient and effective approach to synthesize graphene films directly on dielectric substrates. Here, we report the controlled growth of ultrathin carbon films, which have a similar structure to graphene, directly on silicon substrates in a process of seeded chemical vapor deposition (CVD). Crystalline silicon with a thermally grown 300 nm oxide layer was first treated with 3-trimethoxysilyl-1-propanamine (APS), which was used as an anchor point for the covalent deposition of small graphene flakes, obtained from graphite using the Hummers' method. Surface coverage of these flakes on the silicon substrate was estimated by scanning electron microscopy (SEM) to be around only 0.01% of the total area. By treating the covalently deposited graphene as seeds for CVD growth, the coverage was increased to >40% when using ethanol as the carbon source. Examination of the carbon thin films with SEM, X-ray photoelectron spectroscopy, and Raman spectroscopy indicated that they consist of domains of coherent, single-layer graphene produced by the coalescence of the expanding graphene islands. This approach potentially lends itself to the production of high-quality graphene films that may be suitable for device fabrication.

5.
Chemistry ; 26(34): 7589-7594, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32242986

ABSTRACT

An unprecedented spin cluster-based network architecture {[NiII 2 (pdaa)(OH)2 (H2 O)]n (H2 pdaa=1,4-phenylene diacetic acid)}, comprising 1D linear chains of NiII ions crosslinked via Ni4 O4 cubanes, forms under hydrothermal conditions; this 3D coordination network exhibits magnetic ordering at 23.9 K as well as a second magnetic ordering process at 2.8 K likely associated with a structural phase transition.

6.
Nanomaterials (Basel) ; 9(3)2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30897752

ABSTRACT

Semiconductor nanocrystals or quantum dots (QDs) have unique optical and physical properties that make them potential imaging tools in biological and medical applications. However, concerns over the aqueous dispersivity, toxicity to cells, and stability in biological environments may limit the use of QDs in such applications. Here, we report an investigation into the cytotoxicity of aqueously dispersed CdSe(S) and CdSe(S)/ZnO core/shell QDs in the presence of human colorectal carcinoma cells (HCT-116) and a human skin fibroblast cell line (WS1). The cytotoxicity of the precursor solutions used in the synthesis of the CdSe(S) QDs was also determined in the presence of HCT-116 cells. CdSe(S) QDs were found to have a low toxicity at concentrations up to 100 µg/mL, with a decreased cell viability at higher concentrations, indicating a highly dose-dependent response. Meanwhile, CdSe(S)/ZnO core/shell QDs exhibited lower toxicity than uncoated QDs at higher concentrations. Confocal microscopy images of HCT-116 cells after incubation with CdSe(S) and CdSe(S)/ZnO QDs showed that the cells were stable in aqueous concentrations of 100 µg of QDs per mL, with no sign of cell necrosis, confirming the cytotoxicity data.

7.
Adv Mater ; 29(41)2017 Nov.
Article in English | MEDLINE | ID: mdl-28922475

ABSTRACT

Colloidal quantum dots (QDs) are promising candidate materials for photovoltaics (PV) owing to the tunable bandgap and low-cost solution processability. Lead selenide (PbSe) QDs are particularly attractive to PV applications due to the efficient multiple-exciton generation and carrier transportation. However, surface defects arising from the oxidation of the PbSe QDs have been the major limitation for their development in PV. Here, a new passivation method for chlorinated PbSe QDs via ion exchange with cesium lead halide (Br, I) perovskite nanocrystals is reported. The surface chloride ions on the as-synthesized QDs can be partially exchanged with bromide or iodide ions from the perovskite nanocrystals, hence forming a hybrid halide passivation. Consistent with the improved photoluminescence quantum yield, the champion PV device fabricated with these PbSe QDs achieves a PCE of 8.2%, compared to 7.3% of that fabricated with the untreated QDs. This new method also leads to devices with excellent air-stability, retaining at least 93% of their initial PCEs after being stored in ambient conditions for 57 d. This is considered as the first reported PbSe QD solar cell with a PCE of over 8% to date.

8.
Inorg Chem ; 56(14): 7851-7860, 2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28641000

ABSTRACT

Kagomé lattice types have been of intense interest as idealized examples of extended frustrated spin systems. Here we demonstrate how the use of neutron diffraction and inelastic neutron scattering coupled with spin wave theory calculations can be used to elucidate the complex magnetic interactions of extended spin networks. We show that the magnetic properties of the coordination polymer Mn3(1,2,4-(O2C)3C6H3)2, a highly distorted kagomé lattice, have been erroneously characterized as a canted antiferromagnet in previous works. Our results demonstrate that, although the magnetic structure is ferrimagnetic, with a net magnetic moment, frustration persists in the system. We conclude by showing that the conventions of the Goodenough-Kanamori rules, which are often applied to similar magnetic exchange interactions, are not relevant in this case.

9.
ACS Appl Mater Interfaces ; 8(47): 32581-32590, 2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27933814

ABSTRACT

High activity, a low rate of CO poisoning, and long-term stability of Pd electro-catalysts are necessary for practical use as an anode material in direct formic acid fuel cells. Achieving a high degree of Pd nanoparticle dispersion on a carbon support, without agglomeration, while maintaining a facile electron transfer through the catalyst surface are two challenging tasks to be overcome in fulfilling this aim. Herein, we report the effect of addition of La/La-oxides on the efficiency of Pd nanoparticles supported on reduced graphene oxide (rGO) for formic acid electro-oxidation reaction. A series of electro-catalysts with different Pd-La molar ratios were successfully synthesized and characterized using a range of techniques including PXRD, XPS, TEM, FTIR, and Raman spectroscopy and then tested as anode materials for direct formic acid fuel cells. We explore that the lanthanum species (La/La-oxide) significantly promote the activity and stability of Pd catalyst toward electrocatalytic oxidation of formic acid. The metallic ratio is found to be critical, and the activity order of various catalysts is observed as follows; Pd30La70/rGO > Pd80La20/rGO > Pd70La30 rGO. The obtained mass specific activity for Pd30La70/rGO (986.42 A/g) is 2.18 times higher than that for Pd/rGO (451 A/g) and 16 times higher than that for Pd/C (61.5 A/g) at given onset peak potentials. The high activity and stability of the electro-catalysts are attributed to the uniform dispersion of Pd nanoparticles over the rGO support, as evidenced from TEM images. It is believed that the role of La species in promoting the catalyst activity is to disperse the catalyst particles during synthesis and to facilitate the electron transfer via providing a suitable pathway during electrochemical testing.

10.
Dalton Trans ; 45(19): 8278-83, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27109447

ABSTRACT

Tris(acetylacteonate) iron(iii) is a relatively ubiquitous mononuclear inorganic coordination complex. The bidentate nature of the three acetylacteonate ligands coordinating around a single centre inevitably leads to structural isomeric forms, however whether or not this relates to chirality in the solid state has been questioned in the literature. Variable temperature neutron diffraction data down to T = 3 K, highlights the dynamic nature of the ligand environment, including the motions of the hydrogen atoms. The Fourier transform of the molecular dynamics simulation based on the experimentally determined structure was shown to closely reproduce the low temperature vibrational density of states obtained using inelastic neutron scattering.

11.
Mater Sci Eng C Mater Biol Appl ; 64: 167-172, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27127041

ABSTRACT

Highly luminescent quantum dots (QDs) that emit in the visible spectrum are of interest to a number of imaging technologies, not least that of biological samples. One issue that hinders the application of luminescent markers in biology is the potential toxicity of the fluorophore. Here we show that hydrothermally synthesized ZnSe(S) QDs have low cytotoxicity to both human colorectal carcinoma cells (HCT-116) and human skin fibroblast cells (WS1). The QDs exhibited a high degree of crystallinity, with a strong blue photoluminescence at up to 29% quantum yield relative to 4',6-diamidino-2-phenylindole (DAPI) without post-synthetic UV-irradiation. Confocal microscopy images obtained of HCT-116 cells after incubation with the QDs highlighted the stability of the particles in cell media. Cytotoxicity studies showed that both HCT-116 and WS1 cells retain 100% viability after treatment with the QDs at concentrations up to 0.5g/L, which makes them of potential use in biological imaging applications.


Subject(s)
Cytotoxins , Luminescence , Quantum Dots/chemistry , Selenium Compounds , Sulfides , Ultraviolet Rays , Zinc Compounds , Cell Line, Tumor , Cytotoxins/chemical synthesis , Cytotoxins/chemistry , Cytotoxins/pharmacology , Humans , Selenium Compounds/chemical synthesis , Selenium Compounds/chemistry , Selenium Compounds/pharmacology , Sulfides/chemical synthesis , Sulfides/chemistry , Sulfides/pharmacology , Zinc Compounds/chemical synthesis , Zinc Compounds/chemistry , Zinc Compounds/pharmacology
12.
J Phys Condens Matter ; 28(12): 126005, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-26931058

ABSTRACT

We describe powder inelastic neutron scattering experiments on a porous coordination polymer Co3(OH)2(C4O4)2, which has two different ordered magnetic phases known to display spin frustrated behaviour, resulting in an idle-spin phase. The moment on each ion is represented by an effective total angular moment J(eff ) = ½. A non-dispersive magnetic mode was observed in the idle-spin phase which is described by a simple dimer model that assumes ΔJ = 0. The excitation was found to persist well above the long range ordering temperature into the paramagnetic region. A combination of frustration, the J(eff) = ½ and low dimensionality may induce these quantum phenomena.

13.
Chemphyschem ; 15(17): 3776-81, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25212729

ABSTRACT

The crystal structure of pentamethylbenzene has been obtained for the first time with the use of synchrotron radiation, whilst the low-energy spectrum of lattice dynamics, dominated by the methyl group torsions, was obtained using inelastic neutron scattering. The effect of symmetry lowering by the removal of a single methyl group relative to hexamethylbenzene has been investigated, including the role that this plays in the charge-transfer characteristics of complexes formed with tetracyanoethylene.

14.
Inorg Chem ; 52(23): 13462-8, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24224463

ABSTRACT

We report the magnetic structure of the two magnetically ordered phases of Co3(OH)2(C4O4)2, a coordination polymer that consists of a triangular framework decorated with anisotropic Co(II) ions. Neutron diffraction experiments allow us to confirm that the magnetic behavior changes upon dehydration and reveal the complex phase behavior of this system, relative to the hydrated compound Co3(OH)2(C4O4)2·3H2O. One phase is shown to display spin idle behavior, where only a fraction of the moments order at intermediate temperatures, while at the lowest temperatures the system orders fully, in this case with a net magnetic moment. This novel magnetic behavior is discussed within the framework of a simple Hamiltonian and representational analysis and rationalizes this multiphase behavior by considering the combination of frustration and anisotropy. The change in behavior on dehydration is also rationalized with respect to the changes in the single-ion anisotropy of the cobalt.

15.
Chemistry ; 18(41): 13018-24, 2012 Oct 08.
Article in English | MEDLINE | ID: mdl-22945884

ABSTRACT

The Group XIV tetratolyl series X(C(6)H(4)-CH(3))(4) (X = C, Si, Ge, Sn, Pb) were studied by using inelastic neutron scattering to measure the low-energy phonon spectra to directly access the methyl-group torsional modes. The effect of increased molecular radius as a function of the size of the central atom was shown to have direct influence on the methyl dynamics, reinforced with the findings of molecular dynamics and contact surface calculations, based upon the solid-state structures. The torsional modes in the lightest analogue were found to be predominantly intramolecular: the Si and Ge analogues have a high degree of intermolecular methyl-methyl group interactions, whilst the heaviest analogues (Sn and Pb) showed pronounced intermolecular methyl interactions with the whole phonon bath of the lattice modes.

16.
Nano Lett ; 11(11): 4919-22, 2011 Nov 09.
Article in English | MEDLINE | ID: mdl-21988328

ABSTRACT

Here, we present the first muon spectroscopy investigation of graphene, focused on chemically produced, gram-scale samples, appropriate to the large muon penetration depth. We have observed an evident muon spin precession, usually the fingerprint of magnetic order, but here demonstrated to originate from muon-hydrogen nuclear dipolar interactions. This is attributed to the formation of CHMu (analogous to CH(2)) groups, stable up to 1250 K where the signal still persists. The relatively large signal amplitude demonstrates an extraordinary hydrogen capture cross section of CH units. These results also rule out the formation of ferromagnetic or antiferromagnetic order in chemically synthesized graphene samples.


Subject(s)
Graphite/chemistry , Hydrogen/chemistry , Materials Testing/methods , Mesons , Nanostructures/chemistry , Nanostructures/ultrastructure , Hydrogen Bonding , Particle Size
17.
Dalton Trans ; 40(13): 3398-401, 2011 Apr 07.
Article in English | MEDLINE | ID: mdl-21380476

ABSTRACT

A microporous metal-organic framework [Cu(3)(ipO)(2)(pyz)(2)](n), (ipO = 2-hydroxyisophthalic acid, pyz = pyrazine) was synthesized via an in situ. ligand transformation reaction. The microporous framework displays helical arrays of ipo ligands holding the Cu atoms in 2D sheets, whilst the coordination of pyz molecules acts to arrange these sheets into a microporous 3D structure. Remarkable selective sorption behaviour (>5) for H(2) over N(2) is observed and explained with molecular dynamics simulations.

18.
Inorg Chem ; 50(6): 2246-51, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21294523

ABSTRACT

We report the magnetic structure of two of the magnetically ordered phases of Co(3)(OH)(2)(C(4)O(4))(2)·3H(2)O, a coordination polymer that consists of a triangular framework decorated with anisotropic Co(II) ions. The combination of neutron diffraction experiments and magnetic susceptibility data allows us to identify one phase as displaying spin idle behavior, where only a fraction of the moments order at intermediate temperatures, while at the lowest temperatures the system orders fully. This novel magnetic behavior is discussed within the framework of a simple Hamiltonian and representational analysis and rationalizes this multiphase behavior by considering the combination of frustration and anisotropy.

19.
Dalton Trans ; 39(41): 9860-5, 2010 Nov 07.
Article in English | MEDLINE | ID: mdl-20838688

ABSTRACT

The use of 1,3,5-benzene tricarboxylic acid (H(3)btc) as an organic linker has allowed us to achieve the rational design of two pairs of isostructural coordination polymers having molecular formulae [M(2)(btc)(F)](n) (M(ii) = Mn (1), Co (2)) and [M(3)(btc)(Hbtc)(OH)(H(2)O)(11)](n) (M(ii) = Fe (3), Co (4)) where btc and Hbtc represent the fully and doubly de-protonated tricarboxylates respectively. These compounds were synthesized using hydrothermal methods and characterized by thermal analysis and variable temperature magnetic measurements. The X-ray analysis reveals that compounds 1 and 2 crystallize in the monoclinic space group C2/c while compounds 3 and 4 crystallize in the monoclinic space group C2. Compounds 1 and 2 feature fluoride bridged 1D metal chains linked together via carboxylate groups of btc, whilst compounds 3 and 4 consist of 1D zigzag chains having strong hydrogen bonds with neighbouring chains. Variable temperature magnetic measurements show an overall antiferromagnetic behaviour for compounds 1, 2 and 4, with no indication of magnetic ordering phenomena in the temperature range from 300-2 K. As 3 and 4 are isostructural, we assume that the magnetic properties are similar.

20.
Dalton Trans ; 39(14): 3372-4, 2010 Apr 14.
Article in English | MEDLINE | ID: mdl-20379528

ABSTRACT

A coordination polymer, [Co(II)(bIM)(acetate)] (bIM = benzimidazole) was synthesized using a solvothermal method; the complex has a two dimensional non-interpenetrated network structure and exhibits a spin-canted antiferromagnetic behaviour at low temperature and a high coercive field.

SELECTION OF CITATIONS
SEARCH DETAIL
...