Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 128(16): 162701, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35522496

ABSTRACT

The ^{18}O(α,γ)^{22}Ne reaction is an essential part of a reaction chain that produces the ^{22}Ne(α,n)^{25}Mg neutron source for both the weak and main components of the slow neutron-capture process. At temperatures of stellar helium burning, the astrophysically relevant resonances in the ^{18}O(α,γ)^{22}Ne reaction that dominate the reaction rate occur at α particle energies E_{lab} of 472 and 569 keV. However, previous experiments have shown the strengths of these two resonances to be very weak, and only upper limits or partial resonance strengths could be obtained. This Letter reports the first direct measurement of the total resonance strength for the 472- and 569-keV resonances, 0.26±0.05 and 0.63±0.30 µeV, respectively. New resonance strengths for the resonances at α particle energies of 662.1, 749.9, and 767.6 keV are also provided. These results were achieved in an experiment optimized for background suppression and detection efficiency. The experiment was performed at the Sanford Underground Research Facility, in the 4850-foot underground cavity dedicated to the Compact Accelerator System for Performing Astrophysical Research. The experimental end station used the γ-summing High EffiCiency TOtal absorption spectrometeR. Compared to previous works, the results decrease the stellar reaction rate by as much as ≈46_{-11}^{+6}% in the relevant temperature range of stellar helium burning.

3.
Phys Rev Lett ; 117(14): 142502, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27740778

ABSTRACT

The ^{17}O(p,α)^{14}N reaction plays a key role in various astrophysical scenarios, from asymptotic giant branch stars to classical novae. It affects the synthesis of rare isotopes such as ^{17}O and ^{18}F, which can provide constraints on astrophysical models. A new direct determination of the E_{R}=64.5 keV resonance strength performed at the Laboratory for Underground Nuclear Astrophysics (LUNA) accelerator has led to the most accurate value to date ωγ=10.0±1.4_{stat}±0.7_{syst} neV, thanks to a significant background reduction underground and generally improved experimental conditions. The (bare) proton partial width of the corresponding state at E_{x}=5672 keV in ^{18}F is Γ_{p}=35±5_{stat}±3_{syst} neV. This width is about a factor of 2 higher than previously estimated, thus leading to a factor of 2 increase in the ^{17}O(p, α)^{14}N reaction rate at astrophysical temperatures relevant to shell hydrogen burning in red giant and asymptotic giant branch stars. The new rate implies lower ^{17}O/^{16}O ratios, with important implications on the interpretation of astrophysical observables from these stars.

4.
Phys Rev Lett ; 115(25): 252501, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26722918

ABSTRACT

The ^{22}Ne(p,γ)^{23}Na reaction takes part in the neon-sodium cycle of hydrogen burning. This cycle affects the synthesis of the elements between ^{20}Ne and ^{27}Al in asymptotic giant branch stars and novae. The ^{22}Ne(p,γ)^{23}Na reaction rate is very uncertain because of a large number of unobserved resonances lying in the Gamow window. At proton energies below 400 keV, only upper limits exist in the literature for the resonance strengths. Previous reaction rate evaluations differ by large factors. In the present work, the first direct observations of the ^{22}Ne(p,γ)^{23}Na resonances at 156.2, 189.5, and 259.7 keV are reported. Their resonance strengths are derived with 2%-7% uncertainty. In addition, upper limits for three other resonances are greatly reduced. Data are taken using a windowless ^{22}Ne gas target and high-purity germanium detectors at the Laboratory for Underground Nuclear Astrophysics in the Gran Sasso laboratory of the National Institute for Nuclear Physics, Italy, taking advantage of the ultralow background observed deep underground. The new reaction rate is a factor of 20 higher than the recent evaluation at a temperature of 0.1 GK, relevant to nucleosynthesis in asymptotic giant branch stars.

5.
Phys Rev Lett ; 109(20): 202501, 2012 Nov 16.
Article in English | MEDLINE | ID: mdl-23215474

ABSTRACT

Classical novae are important contributors to the abundances of key isotopes, such as the radioactive (18)F, whose observation by satellite missions could provide constraints on nucleosynthesis models in novae. The (17)O(p,γ)(18)F reaction plays a critical role in the synthesis of both oxygen and fluorine isotopes, but its reaction rate is not well determined because of the lack of experimental data at energies relevant to novae explosions. In this study, the reaction cross section has been measured directly for the first time in a wide energy range E(c.m.)~/= 200-370 keV appropriate to hydrogen burning in classical novae. In addition, the E(c.m.)=183 keV resonance strength, ωγ=1.67±0.12 µeV, has been measured with the highest precision to date. The uncertainty on the (17)O(p,γ)(18)F reaction rate has been reduced by a factor of 4, thus leading to firmer constraints on accurate models of novae nucleosynthesis.

6.
Phys Rev Lett ; 102(23): 232502, 2009 Jun 12.
Article in English | MEDLINE | ID: mdl-19658929

ABSTRACT

The 3He(alpha,gamma)7Be reaction presently represents the largest nuclear uncertainty in the predicted solar neutrino flux and has important implications on the big bang nucleosynthesis, i.e., the production of primordial 7Li. We present here the results of an experiment using the recoil separator ERNA (European Recoil separator for Nuclear Astrophysics) to detect directly the 7Be ejectiles. In addition, off-beam activation and coincidence gamma-ray measurements were performed at selected energies. At energies above 1 MeV a large discrepancy compared to previous results is observed both in the absolute value and in the energy dependence of the cross section. Based on the available data and models, a robust estimate of the cross section at the astrophysical relevant energies is proposed.

7.
Phys Rev Lett ; 98(12): 122501, 2007 Mar 23.
Article in English | MEDLINE | ID: mdl-17501115

ABSTRACT

The fusion reactions 12C(12C,alpha)20Ne and 12C(12C,p)23Na have been studied from E=2.10 to 4.75 MeV by gamma-ray spectroscopy using a C target with ultralow hydrogen contamination. The deduced astrophysical S(E)* factor exhibits new resonances at E< or =3.0 MeV, in particular, a strong resonance at E=2.14 MeV, which lies at the high-energy tail of the Gamow peak. The resonance increases the present nonresonant reaction rate of the alpha channel by a factor of 5 near T=8x10(8) K. Because of the resonance structure, extrapolation to the Gamow energy EG=1.5 MeV is quite uncertain. An experimental approach based on an underground accelerator placed in a salt mine in combination with a high efficiency detection setup could provide data over the full EG energy range.

8.
Phys Rev Lett ; 97(12): 122502, 2006 Sep 22.
Article in English | MEDLINE | ID: mdl-17025958

ABSTRACT

The nuclear physics input from the 3He(alpha,gamma)7Be cross section is a major uncertainty in the fluxes of 7Be and 8B neutrinos from the Sun predicted by solar models and in the 7Li abundance obtained in big-bang nucleosynthesis calculations. The present work reports on a new precision experiment using the activation technique at energies directly relevant to big-bang nucleosynthesis. Previously such low energies had been reached experimentally only by the prompt-gamma technique and with inferior precision. Using a windowless gas target, high beam intensity, and low background gamma-counting facilities, the 3He(alpha,gamma)7Be cross section has been determined at 127, 148, and 169 keV center-of-mass energy with a total uncertainty of 4%. The sources of systematic uncertainty are discussed in detail. The present data can be used in big-bang nucleosynthesis calculations and to constrain the extrapolation of the 3He(alpha,gamma)7Be astrophysical S factor to solar energies.

9.
Phys Rev Lett ; 90(23): 232501, 2003 Jun 13.
Article in English | MEDLINE | ID: mdl-12857251

ABSTRACT

An exclusive measurement of the Coulomb breakup of 8B into 7Be+p at 254A MeV allowed the study of the angular correlations of the breakup particles. These correlations demonstrate clearly that E1 multipolarity dominates and that E2 multipolarity can be neglected. By using a simple single-particle model for 8B and treating the breakup in first-order perturbation theory, we extract a zero-energy S factor of S17(0)=18.6+/-1.2+/-1.0 eV b, where the first error is experimental and the second one reflects the theoretical uncertainty in the extrapolation.

10.
Phys Rev Lett ; 90(16): 162501, 2003 Apr 25.
Article in English | MEDLINE | ID: mdl-12731972

ABSTRACT

The 21Na(p,gamma)22Mg reaction is expected to play an important role in the nucleosynthesis of 22Na in oxygen-neon novae. The decay of 22Na leads to the emission of a characteristic 1.275 MeV gamma-ray line. This report provides the first direct measurement of the rate of this reaction using a radioactive 21Na beam, and discusses its astrophysical implications. The energy of the important state was measured to be E(c.m.)=205.7+/-0.5 keV with a resonance strength omegagamma=1.03+/-0.16(stat)+/-0.14(sys) meV.

11.
Am J Orthopsychiatry ; 61(4): 584-91, 1991 Oct.
Article in English | MEDLINE | ID: mdl-1746636

ABSTRACT

Clinicians who treat children in foster care must continually balance the development and therapeutic needs of the foster child with the expectations of a complex network of caretakers and professionals with whom the child interacts. A model that integrates individual and systemic issues in the assessment and treatment of children in foster care is proposed.


Subject(s)
Adaptation, Psychological , Child Behavior Disorders/psychology , Child Behavior Disorders/therapy , Child Welfare , Foster Home Care/psychology , Parent-Child Relations , Personality Assessment , Psychotherapy/methods , Child , Humans , Individuation , Risk Factors , Social Environment
SELECTION OF CITATIONS
SEARCH DETAIL
...