Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 274(13): 8823-31, 1999 Mar 26.
Article in English | MEDLINE | ID: mdl-10085124

ABSTRACT

Two new cloned human cDNAs encode paralogs of the 85-kDa cytosolic phospholipase A2 (cPLA2). We propose to call these cPLA2beta (114 kDa) and cPLA2gamma (61 kDa), giving the name cPLA2alpha to the well known 85-kDa enzyme. cPLA2beta mRNA is expressed more highly in cerebellum and pancreas and cPLA2gamma more highly in cardiac and skeletal muscle. Sequence-tagged site mapping places cPLA2beta on chromosome 15 in a region near a phosphoinositol bisphosphate phosphatase. The mRNA for cPLA2beta is spliced only at a very low level, and Northern blots in 24 tissues show exclusively the unspliced form. cPLA2beta has much lower activity on 2-arachidonoyl-phosphatidylcholine liposomes than either of the other two enzymes. Its sequence contains a histidine motif characteristic of the catalytic center of caspase proteases of the apoptotic cascade but no region characteristic of the catalytic cysteine. Sequence-tagged site mapping places cPLA2gamma on chromosome 19 near calmodulin. cPLA2gamma lacks the C2 domain, which gives cPLA2alpha its Ca2+ sensitivity, and accordingly cPLA2gamma has no dependence upon calcium, although cPLA2beta does. cPLA2gamma contains a prenyl group-binding site motif and appears to be largely membrane-bound. cPLA2alpha residues activated by phosphorylation do not appear to be well conserved in either new enzyme. In contrast, all three previously known catalytic residues, as well as one additional essential arginine, Arg-566 in cPLA2alpha, are conserved in both new enzyme sequences. Mutagenesis shows strong dependence on these residues for catalytic activity of all three enzymes.


Subject(s)
Phospholipases A/genetics , Amino Acid Sequence , Base Sequence , Binding Sites/genetics , Chromosome Mapping , Chromosomes, Human, Pair 15/genetics , Cloning, Molecular , Exons/genetics , Gene Expression Regulation, Enzymologic/genetics , Humans , Introns/genetics , Isoenzymes/chemistry , Isoenzymes/genetics , Molecular Sequence Data , Phospholipases A/chemistry , Phospholipases A2 , RNA Splicing/genetics , RNA, Messenger/metabolism , Sequence Alignment , Sequence Analysis, DNA , Substrate Specificity
2.
J Biol Chem ; 271(32): 19225-31, 1996 Aug 09.
Article in English | MEDLINE | ID: mdl-8702602

ABSTRACT

Cytosolic phospholipase A2 (cPLA2) hydrolyzes the sn-2-acyl ester bond of phospholipids and shows a preference for arachidonic acid-containing substrates. We found previously that Ser-228 is essential for enzyme activity and is likely to function as a nucleophile in the catalytic center of the enzyme (Sharp, J. D., White, D. L., Chiou, X. G., Goodson, T., Gamboa, G. C., McClure, D., Burgett, S., Hoskins, J., Skatrud, P. L., Sportsman, J. R., Becker, G. W., Kang, L. H., Roberts, E. F., and Kramer, R. M.(1991) J. Biol. Chem. 266, 14850-14853). cPLA2 contains a catalytic aspartic acid motif common to the subtilisin family of serine proteases. Substitution within this motif of Ala for Asp-549 completely inactivated the enzyme, and substitutions with either glutamic acid or asparagine reduced activity 2000- and 300-fold, respectively. Additionally, using mutants with cysteine replaced by alanine, we found that Cys-331 is responsible for the enzyme's sensitivity to N-ethylmaleimide. Surprisingly, substituting alanine for any of the 19 histidines did not produce inactive enzyme, demonstrating that a classical serine-histidine-aspartate mechanism does not operate in this hydrolase. We found that substituting alanine or histidine for Arg-200 did produce inactive enzyme, while substituting lysine reduced activity 200-fold. Results obtained with the lysine mutant (R200K) and a coumarin ester substrate suggest no specific interaction between Arg-200 and the phosphoryl group of the phospholipid substrate. Arg-200, Ser-228, and Asp-549 are conserved in cPLA2 from six species and also in four nonmammalian phospholipase B enzymes. Our results, supported by circular dichroism, provide evidence that Asp-549 and Arg-200 are critical to the enzyme's function and suggest that the cPLA2 catalytic center is novel.


Subject(s)
Amino Acids/metabolism , Phospholipases A/metabolism , Amino Acid Sequence , Amino Acids/chemistry , Arginine/chemistry , Arginine/metabolism , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Biological Evolution , Catalysis , Conserved Sequence , Cysteine/chemistry , Cysteine/metabolism , Histidine/chemistry , Histidine/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Phospholipases A/chemistry , Phospholipases A/genetics , Phospholipases A2 , Sequence Homology, Amino Acid
3.
J Biol Chem ; 270(46): 27395-8, 1995 Nov 17.
Article in English | MEDLINE | ID: mdl-7499191

ABSTRACT

In human platelets a proline-directed kinase distinct from the ERK MAP kinases is stimulated by both thrombin and the thrombin receptor agonist peptide SFLLRN and may be involved in the activation of Ca(2+)-dependent cytosolic phospholipase A2 (Kramer, R. M., Roberts, E. F., Hyslop, P. A., Utterback, B. G., Hui, K. Y., and Jakubowski, J.A. (1995) J. Biol. Chem. 270, 14816-14823). Here we show that this kinase is identical with or closely related to p38 (the mammalian homolog of HOG1 from yeast), a recently discovered protein kinase typically activated by inflammatory cytokines and environmental stress. Further, we demonstrate that activation of this kinase by thrombin is transient (with maximal stimulation at 1 min), is accompanied by tyrosine phosphorylation, and precedes the activation of the ERK kinases. This is the first report to show that p38 kinase is activated by thrombin and to suggest a role for this MAP kinase in the thrombin-mediated signaling events during platelet activation.


Subject(s)
Blood Platelets/enzymology , Calcium-Calmodulin-Dependent Protein Kinases/blood , Mitogen-Activated Protein Kinases , Thrombin/pharmacology , Amino Acid Sequence , Calcium-Calmodulin-Dependent Protein Kinases/drug effects , Calcium-Calmodulin-Dependent Protein Kinases/isolation & purification , Chromatography, Ion Exchange , Humans , Molecular Sequence Data , Peptide Fragments/pharmacology , Peptides/chemistry , Peptides/metabolism , Phosphotyrosine/metabolism , Platelet Activation , Receptors, Thrombin/physiology , Signal Transduction , Substrate Specificity , p38 Mitogen-Activated Protein Kinases
4.
J Biol Chem ; 269(37): 23250-4, 1994 Sep 16.
Article in English | MEDLINE | ID: mdl-8083230

ABSTRACT

The Ca(2+)-sensitive cytosolic phospholipase A2 (cPLA2) displays both a phospholipase A2 and a lysophospholipase activity. Numerous hydrolases, including lipases, catalyze the hydrolysis of ester bonds by means of an active site triad of amino acids that includes a serine or a cysteine residue. We have examined whether human cPLA2 belongs to this class of enzymes by using site-directed mutagenesis. Although chemical inactivation of cPLA2 by the sulfhydryl reagent N-ethylmaleimide made it appear that cysteine(s) may be essential for catalysis, all 9 cysteine residues of cPLA2 proved dispensable, allowing near-normal enzyme activity when substituted by alanine. We noted that cPLA2 contains a 110-amino-acid region with sequence homology to phospholipase B (PLB) from Penicillium notatum. Interestingly, one of the conserved serines of cPLA2, Ser-228, within this domain aligns with the lipase consensus sequence Gly-X(Leu)-Ser(137)-X(Gly)-Gly of PLB. Replacement of Ser-228 by alanine (or threonine or cysteine) yielded catalytically inactive cPLA2, even though the native conformation was maintained as determined by CD spectroscopy. Likewise, the lysophospholipase activity was completely abolished by the Ser-228 mutations. In contrast, substitution by alanine of three different serines of cPLA2 (Ser-195, Ser-215, or Ser-577) that also aligned with the PLB sequence allowed for substantial enzymatic activity of cPLA2. Our findings provide evidence that 1) Ser-228 participates in the catalytic mechanism of cPLA2 and that 2) both the phospholipase A2 and the lysophospholipase activities of cPLA2 are catalyzed by the same active site residue(s).


Subject(s)
Phospholipases A/metabolism , Serine/metabolism , Amino Acid Sequence , Catalysis , Consensus Sequence , Cytosol/enzymology , Humans , Hydrolysis , Lysophospholipase/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Phospholipases A/chemistry , Phospholipases A2 , Sequence Homology, Amino Acid
5.
J Biol Chem ; 267(7): 4963-7, 1992 Mar 05.
Article in English | MEDLINE | ID: mdl-1311325

ABSTRACT

An antiserum raised against the region of the cardiac ryanodine receptor (residues 2805-2819) containing the phosphorylation site for multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) was used to identify the brain ryanodine receptor. This antiserum, which is cardiac isoform-specific, immunoprecipitated greater than 90% of the [3H]ryanodine receptor binding sites solubilized from guinea pig brain membranes. The immunoprecipitated brain receptor exhibited the characteristic cardiac-type mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The brain ryanodine receptor, like the cardiac ryanodine receptor, was a substrate for CaM kinase. Affinity-purified, site-specific antibodies completely blocked phosphorylation of both brain and cardiac receptors by CaM kinase, and two-dimensional peptide mapping identified the same major 32P-labeled peptide in receptors from both tissues. 125I-Labeled receptors also gave the same peptide maps. These results confirm that mammalian brain expresses the cardiac isoform of the ryanodine receptor. Furthermore, the unique CaM kinase phosphorylation site, which has been shown to regulate Ca2+ channel activity, is conserved.


Subject(s)
Brain/metabolism , Calcium/metabolism , Muscle Proteins/metabolism , Myocardium/metabolism , Protein Kinases/metabolism , Receptors, Cholinergic/metabolism , Animals , Autoradiography , Binding Sites , Blotting, Western , Calcium-Calmodulin-Dependent Protein Kinases , Chromatography, Affinity , Dogs , Guinea Pigs , Peptide Mapping , Phosphorylation , Precipitin Tests , Rats , Ryanodine Receptor Calcium Release Channel , Trypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...