Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-29113780

ABSTRACT

Compensatory growth may increase molecular oxidative damage, which may be mitigated through the intake of dietary antioxidants. However, dietary antioxidants may also reduce concentration of antioxidant enzymes, which have a key role in regulating the oxidative status. Here we investigated whether feeding on a diet rich in antioxidants (vitamin E) enables juvenile European seabass (Dicentrarchus labrax) to catch up after a period of food deprivation with negligible effects on the oxidative stress to blood and brain as compared to fish feeding on a normal diet (i.e., not enriched in antioxidants). The results show that a higher intake in antioxidants favoured compensatory growth, but this came at a cost in terms of increased oxidative damage. Increased intake of antioxidants also resulted in changes in the activity of enzymatic antioxidant defences and increased protein oxidative damage in both brain and blood. In addition, food deprivation caused increased protein oxidative damage in brain. Our findings show that the beneficial effects of dietary antioxidants on growth may be offset by hidden detrimental effects and that different early life events affect different components of oxidative status of a given tissue.


Subject(s)
Antioxidants/administration & dosage , Bass/growth & development , Bass/metabolism , Brain/metabolism , Diet , Food Deprivation , Oxidative Stress , Vitamin E/administration & dosage , Animals , Aquaculture , Bass/blood , Blood Proteins/metabolism , Body Size , Brain/enzymology , Glutathione Peroxidase/blood , Glutathione Peroxidase/metabolism , Superoxide Dismutase/blood , Superoxide Dismutase/metabolism
2.
Ecol Evol ; 7(24): 10536-10545, 2017 12.
Article in English | MEDLINE | ID: mdl-29299235

ABSTRACT

Habitat choice is defined as a nonrandom distribution of genotypes in different microhabitats. Therefore, it could exert a great impact on the genetic variance of natural populations by promoting genetic divergence, local adaptation, and may even lead to sympatric speciation. Despite this potential role in micro- and macro-evolutionary processes, there is little empirical evidence that the various genotypes within a population may differ in habitat choice-related behaviors. Here, we tested whether habitat choice may have contributed to genetic divergence within a local population of the Mediterranean killifish Aphanius fasciatus, which emerged between groups inhabiting microhabitats with different oxygen concentrations during previous field studies. In a first experiment, we studied the distribution of individuals in conditions of hypoxia and normoxia to test whether they had a different ability to shy away from a hypoxic environment; in a second experiment, we analyzed the individual behavior of fish separately in the two conditions, to verify whether they showed peculiar behavioral responses linked to a possible differential distribution. We then analyzed the six allozyme loci, whose allelic and genotypic frequencies were significantly divergent in the previous studies. In the first test, we found that the distribution of the two homozygote genotypes of the glucose-6-phosphate isomerase-1 locus (GPI-1) was significantly different between the hypoxic and the normoxic conditions. During the second test, all individuals were more active in hypoxic conditions, but the two GPI-1 homozygotes showed a significant difference in time spent performing surface breathing, which was consistent with their distribution observed in the first experiment. These results provide evidence that individual behavioral traits, related to genetic features, may lead to a nonrandom distribution of genotypes in heterogeneous although contiguous microhabitats and, consequently, that habitat choice can play a significant role in driving the micro-evolutionary dynamics of this species.

SELECTION OF CITATIONS
SEARCH DETAIL
...