Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(25): 27204-27213, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38947831

ABSTRACT

The densities of eutectic (LiF)2-BeF2 and mixtures of this salt (FLiBe) with LaF3 were measured by dilatometry and by neutron attenuation from 673 K to 1,073 K. Because LaF3 has a limited solubility in FLiBe, it was necessary to determine the amount of LaF3 in solution before the density could be determined. The FLiBe density determination was favorably benchmarked against the literature data. A simple comparison was not available for the LaF3-FLiBe mixtures, so extrapolation of published data was necessary based on analysis using the Molten Salt Thermal Properties Database-Thermochemistry, or MSTDB-TC, developed by the US Department of Energy. Solubilities for LaF3 in FLiBe ranged from 1 to 4 mol % over 673 to 1,073 K. The salt system was heated and cooled over 24 h to evaluate potential changes in composition and hysteresis during the measurement. Changes in the meniscus were observed, and these were included in the correction for density determinations. Salt surface tension may have led to supersaturation of LaF3 in the salt because the solubility curve was nonlinear with respect to the inverse temperature, as would be expected for an ideal system. Surface tension measurements are currently underway to test this hypothesis.

2.
J Vis Exp ; (171)2021 05 07.
Article in English | MEDLINE | ID: mdl-34028436

ABSTRACT

Neutrons have historically been used for a broad range of biological applications employing techniques such as small-angle neutron scattering, neutron spin echo, diffraction, and inelastic scattering. Unlike neutron scattering techniques that obtain information in reciprocal space, attenuation-based neutron imaging measures a signal in real space that is resolved on the order of tens of micrometers. The principle of neutron imaging follows the Beer-Lambert law and is based on the measurement of the bulk neutron attenuation through a sample. Greater attenuation is exhibited by some light elements (most notably, hydrogen), which are major components of biological samples. Contrast agents such as deuterium, gadolinium, or lithium compounds can be used to enhance contrast in a similar fashion as it is done in medical imaging, including techniques such as optical imaging, magnetic resonance imaging, X-ray, and positron emission tomography. For biological systems, neutron radiography and computed tomography have increasingly been used to investigate the complexity of the underground plant root network, its interaction with soils, and the dynamics of water flux in situ. Moreover, efforts to understand contrast details in animal samples, such as soft tissues and bones, have been explored. This manuscript focuses on the advances in neutron bioimaging such as sample preparation, instrumentation, data acquisition strategy, and data analysis using the High Flux Isotope Reactor CG-1D neutron imaging beamline. The aforementioned capabilities will be illustrated using a selection of examples in plant physiology (herbaceous plant/root/soil system) and biomedical applications (rat femur and mouse lung).


Subject(s)
Laboratories , Neutron Diffraction , Animals , Isotopes , Mice , Neutrons , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...