Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 17(14): 11698-709, 2009 Jul 06.
Article in English | MEDLINE | ID: mdl-19582084

ABSTRACT

Dynamical and steady-state behavior of beams propagating in nematic liquid crystals (NLCs) is analyzed. A well-known model for the beam propagation and the director reorientation angle in a NLC cell is treated numerically in space and time. The formation of steady-state soliton breathers in a threshold region of beam intensities is displayed. Below the region the beams diffract, above the region spatiotemporal instabilities develop, as the input intensity and the material parameters are varied. Curiously, the only kind of solitons we could demonstrate in our numerical studies was the breathers. Despite repeated efforts, we could not find the solitons with a steady profile propagating in the NLC model at hand.

2.
Opt Express ; 14(25): 12310-5, 2006 Dec 11.
Article in English | MEDLINE | ID: mdl-19529659

ABSTRACT

The behavior of counterpropagating self-trapped optical beam structures in nematic liquid crystals is investigated. A time-dependent model for the beam propagation and the director reorientation in a nematic liquid crystal is numerically treated in three spatial dimensions and time. We find that the stable vector solitons can only exist in a narrow threshold region of control parameters. Below this region the beams diffract, above they self-focus into a series of focal spots. Spatiotemporal instabilities are observed as the input intensity, the propagation distance, and the birefringence are increased. We demonstrate undulation, filamentation, and convective dynamical instabilities of counterpropagating beams. Qualitatively similar behavior as of the copropagating beams is observed, except that it happens at lower values of control parameters.

3.
Opt Express ; 13(2): 493-504, 2005 Jan 24.
Article in English | MEDLINE | ID: mdl-19488377

ABSTRACT

We investigate numerically the propagation of self-trapped optical beams in nematic liquid crystals. Our analysis includes both spatial and temporal behavior. We display the formation of stable solitons in a narrow threshold region of beam intensities for fixed birefringence, and depict their spatiotemporal instabilities as the input intensity and the birefringence are increased. We demonstrate the breathing and filamentation of solitons above the threshold with increasing input intensity, and discover a convective instability with increasing birefringence. We consider the propagation of complex beam structures in nematic liquid crystals, such as dipoles, beam arrays, and vortices.

4.
Opt Express ; 13(12): 4379-89, 2005 Jun 13.
Article in English | MEDLINE | ID: mdl-19495353

ABSTRACT

We present a comprehensive numerical study of (2+1)D counterpropagating incoherent vortices in photorefractive crystals, in both space and time. We consider a local isotropic dynamical model with Kerr-type saturable nonlinearity, and identify the corresponding conserved quantities. We show, both analytically and numerically, that stable beam structures conserve angular momentum, as long as their stability is preserved. As soon as the beams loose stability, owing to radiation or non-elastic collisions, their angular momentum becomes non-conserved. We discover novel types of rotating beam structures that have no counterparts in the copropagating geometry. We consider the counterpropagation of more complex beam arrangements, such as regular arrays of vortices. We follow the transition from a few beam propagation behavior to the transverse pattern formation dynamics.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(5 Pt 2): 055601, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14682837

ABSTRACT

Two-dimensional spatial solitonic lattices are generated and investigated experimentally and numerically in a Sr(x)Ba(1-x)Nb(2)O(6):Ce crystal. An enhanced stability of these lattices is achieved by exploiting the anisotropy of coherent soliton interaction, in particular the relative phase between soliton rows. The manipulation of individual soliton channels is achieved by the use of supplementary control beams.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(2 Pt 2): 025601, 2003 Aug.
Article in English | MEDLINE | ID: mdl-14525041

ABSTRACT

A time-dependent model for the generation of joint waveguides by counterpropagating light beams in photorefractive crystals is introduced. Depending on initial conditions and parameter values, the beams form stable structures or display periodic and irregular dynamics. Steady-state solutions nonuniform in the direction of propagation are found, representing a general class of self-trapped waveguides that include counterpropagating spatial vector solitons as a particular case.

SELECTION OF CITATIONS
SEARCH DETAIL
...