Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 17(14): 11698-709, 2009 Jul 06.
Article in English | MEDLINE | ID: mdl-19582084

ABSTRACT

Dynamical and steady-state behavior of beams propagating in nematic liquid crystals (NLCs) is analyzed. A well-known model for the beam propagation and the director reorientation angle in a NLC cell is treated numerically in space and time. The formation of steady-state soliton breathers in a threshold region of beam intensities is displayed. Below the region the beams diffract, above the region spatiotemporal instabilities develop, as the input intensity and the material parameters are varied. Curiously, the only kind of solitons we could demonstrate in our numerical studies was the breathers. Despite repeated efforts, we could not find the solitons with a steady profile propagating in the NLC model at hand.

2.
Opt Express ; 14(25): 12310-5, 2006 Dec 11.
Article in English | MEDLINE | ID: mdl-19529659

ABSTRACT

The behavior of counterpropagating self-trapped optical beam structures in nematic liquid crystals is investigated. A time-dependent model for the beam propagation and the director reorientation in a nematic liquid crystal is numerically treated in three spatial dimensions and time. We find that the stable vector solitons can only exist in a narrow threshold region of control parameters. Below this region the beams diffract, above they self-focus into a series of focal spots. Spatiotemporal instabilities are observed as the input intensity, the propagation distance, and the birefringence are increased. We demonstrate undulation, filamentation, and convective dynamical instabilities of counterpropagating beams. Qualitatively similar behavior as of the copropagating beams is observed, except that it happens at lower values of control parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...