Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 25(12)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38136471

ABSTRACT

This paper proposes a new string transformation technique called Move with Interleaving (MwI). Four possible ways of rearranging 2D raster images into 1D sequences of values are applied, including scan-line, left-right, strip-based, and Hilbert arrangements. Experiments on 32 benchmark greyscale raster images of various resolutions demonstrated that the proposed transformation reduces information entropy to a similar extent as the combination of the Burrows-Wheeler transform followed by the Move-To-Front or the Inversion Frequencies. The proposed transformation MwI yields the best result among all the considered transformations when the Hilbert arrangement is applied.

2.
Entropy (Basel) ; 25(3)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36981421

ABSTRACT

A new approach is proposed for lossless raster image compression employing interpolative coding. A new multifunction prediction scheme is presented first. Then, interpolative coding, which has not been applied frequently for image compression, is explained briefly. Its simplification is introduced in regard to the original approach. It is determined that the JPEG LS predictor reduces the information entropy slightly better than the multi-functional approach. Furthermore, the interpolative coding was moderately more efficient than the most frequently used arithmetic coding. Finally, our compression pipeline is compared against JPEG LS, JPEG 2000 in the lossless mode, and PNG using 24 standard grayscale benchmark images. JPEG LS turned out to be the most efficient, followed by JPEG 2000, while our approach using simplified interpolative coding was moderately better than PNG. The implementation of the proposed encoder is extremely simple and can be performed in less than 60 lines of programming code for the coder and 60 lines for the decoder, which is demonstrated in the given pseudocodes.

3.
Data Brief ; 40: 107806, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35071704

ABSTRACT

Trees are natural objects, where deviations through the branches amplify geometric data for 3D representation and bring challenges to various applications dealing with 3D models, such as compression, visualization, symmetry detection, and radiative transfer simulation. This data article describes dataset of approximately symmetric 3D tree models with manually identified predominant symmetry plane in each tree model. Parameters for procedural tree synthesis were manually adjusted to produce approximately bilaterally symmetric trees which are grouped into species with distinct features. In the last step, each tree was manually annotated with approximate symmetry plane. This dataset contains geometric data of branches, manually defined parameters for tree synthesis method, point clouds, and a division plane with a score of bilateral symmetry strength. The generated trees can be used as benchmark data for verification of approximate reflectional symmetry detection methods. Additionally, generated 3D tree models can be used for other applications requiring pregenerated trees, such as compression of tree models, instancing, decimation methods, and radiative transfer simulation and modeling.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 736-739, 2020 07.
Article in English | MEDLINE | ID: mdl-33018092

ABSTRACT

In the last decade, accurate identification of motor unit (MU) firings received a lot of research interest. Different decomposition methods have been developed, each with its advantages and disadvantages. In this study, we evaluated the capability of three different types of neural networks (NNs), namely dense NN, long short-term memory (LSTM) NN and convolutional NN, to identify MU firings from high-density surface electromyograms (HDsEMG). Each type of NN was evaluated on simulated HDsEMG signals with a known MU firing pattern and high variety of MU characteristics. Compared to dense NN, LSTM and convolutional NN yielded significantly higher precision and significantly lower miss rate of MU identification. LSTM NN demonstrated higher sensitivity to noise than convolutional NN.Clinical Relevance-MU identification from HDsEMG signals offers valuable insight into neurophysiology of motor system but requires relatively high level of expert knowledge. This study assesses the capability of self-learning artificial neural networks to cope with this problem.


Subject(s)
Motor Neurons , Muscle, Skeletal , Electromyography , Neural Networks, Computer
5.
IEEE Trans Vis Comput Graph ; 26(11): 3177-3188, 2020 11.
Article in English | MEDLINE | ID: mdl-31247555

ABSTRACT

In the paper, we present a method for space-efficient representation of geometric tree models, which are provided as skeletons with radii attached to individual branch segments. The proposed approach uses a new differential 3D chain code to encode orientation changes of consecutive branch segments, which allows optimizing chain code generation for increased compressibility while maintaining control over the model reconstruction error. The presented method is the first to encode the complete branching geometry including the branch radii and provides level-of-detail construction directly from the chain code. It is demonstrated that by using interpolative encoding of the resulting tree descriptors and radii sequences, the storage requirements for geometric description of a mixed all-aged forest can be reduced to less than 15 percent of its raw size while preserving the structural fidelity of tree models.

SELECTION OF CITATIONS
SEARCH DETAIL
...