Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 307
Filter
2.
Physiol Plant ; 176(3): e14311, 2024.
Article in English | MEDLINE | ID: mdl-38715208

ABSTRACT

Although microalgae have only recently been recognized as part of the plant and soil microbiome, their application as biofertilizers has a tradition in sustainable crop production. Under consideration of their ability to produce the plant growth-stimulating hormone cytokinin (CK), known to also induce pathogen resistance, we have assessed the biocontrol ability of CK-producing microalgae. All pro- and eukaryotic CK-producing microalgae tested were able to enhance the tolerance of tobacco against Pseudomonas syringae pv. tabaci (PsT) infection. Since Chlamydomonas reinhardtii (Cre) proved to be the most efficient, we functionally characterized its biocontrol ability. We employed the CRISPR-Cas9 system to generate the first knockouts of CK biosynthetic genes in microalgae. Specifically, we targeted Cre Lonely Guy (LOG) and isopentenyltransferase (IPT) genes, the key genes of CK biosynthesis. While Cre wild-type exhibits a strong protection, the CK-deficient mutants have a reduced ability to induce plant defence. The degree of protection correlates with the CK levels, with the IPT mutants showing less protection than the LOG mutants. Gene expression analyses showed that Cre strongly stimulates tobacco resistance through defence gene priming. This study functionally verifies that Cre primes defence responses with CK, which contributes to the robustness of the effect. This work contributes to elucidate microalgae-mediated plant defence priming and identifies the role of CKs. In addition, these results underscore the potential of CK-producing microalgae as biologicals in agriculture by combining biofertilizer and biocontrol ability for sustainable and environment-friendly crop management.


Subject(s)
CRISPR-Cas Systems , Chlamydomonas reinhardtii , Cytokinins , Disease Resistance , Nicotiana , Plant Diseases , Nicotiana/genetics , Nicotiana/microbiology , Nicotiana/immunology , Cytokinins/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Disease Resistance/genetics , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Mutation
3.
Plant Cell Environ ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809156

ABSTRACT

In epiphytes, aerial roots are important to combat water-deficient, nutrient-poor, and high-irradiance microhabitats. However, whether aerial roots can respond to gravity and whether auxin plays a role in regulating aerial root development remain open-ended questions. Here, we investigated the gravitropic response of the epiphytic orchid Phalaenopsis aphrodite. Our data showed that aerial roots of P. aphrodite failed to respond to gravity, and this was correlated with a lack of starch granules/statolith sedimentation in the roots and the absence of the auxin efflux carrier PIN2 gene. Using an established auxin reporter, we discovered that auxin maximum was absent in the quiescent center of aerial roots of P. aphrodite. Also, gravity failed to trigger auxin redistribution in the root caps. Hence, loss of gravity sensing and gravity-dependent auxin redistribution may be the genetic factors contributing to aerial root development. Moreover, the architectural and functional innovations that achieve fast gravitropism in the flowering plants appear to be lost in both terrestrial and epiphytic orchids, but are present in the early diverged orchid subfamilies. Taken together, our findings provide physiological and molecular evidence to support the notion that epiphytic orchids lack gravitropism and suggest diverse geotropic responses in the orchid family.

4.
Pharmaceutics ; 16(5)2024 May 11.
Article in English | MEDLINE | ID: mdl-38794311

ABSTRACT

Bcr-Abl is an oncoprotein with aberrant tyrosine kinase activity involved in the progression of chronic myeloid leukemia (CML) and has been targeted by inhibitors such as imatinib and nilotinib. However, despite their efficacy in the treatment of CML, a mechanism of resistance to these drugs associated with mutations in the kinase region has emerged. Therefore, in this work, we report the synthesis of 14 new 2,6,9-trisubstituted purines designed from our previous Bcr-Abl inhibitors. Here, we highlight 11b, which showed higher potency against Bcr-Abl (IC50 = 0.015 µM) than imatinib and nilotinib and exerted the most potent antiproliferative properties on three CML cells harboring the Bcr-Abl rearrangement (GI50 = 0.7-1.3 µM). In addition, these purines were able to inhibit the growth of KCL22 cell lines expressing Bcr-AblT315I, Bcr-AblE255K, and Bcr-AblY253H point mutants in micromolar concentrations. Imatinib and nilotinib were ineffective in inhibiting the growth of KCL22 cells expressing Bcr-AblT315I (GI50 > 20 µM) compared to 11b-f (GI50 = 6.4-11.5 µM). Molecular docking studies explained the structure-activity relationship of these purines in Bcr-AblWT and Bcr-AblT315I. Finally, cell cycle cytometry assays and immunodetection showed that 11b arrested the cells in G1 phase, and that 11b downregulated the protein levels downstream of Bcr-Abl in these cells.

5.
ACS Chem Neurosci ; 15(10): 1990-2005, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38655788

ABSTRACT

Neuroactive steroids are a group of steroid molecules that are involved in the regulation of functions of the nervous system. The nervous system is not only the site of their action, but their biosynthesis can also occur there. Neuroactive steroid levels depend not only on the physiological state of an individual (person's sex, age, diurnal variation, etc.), but they are also affected by various pathological processes in the nervous system (some neurological and psychiatric diseases or injuries), and new knowledge can be gained by monitoring these processes. The aim of our research was to develop and validate a comprehensive method for the simultaneous determination of selected steroids with neuroactive effects in human serum. The developed method enables high throughput and a sensitive quantitative analysis of nine neuroactive steroid substances (pregnenolone, progesterone, 5α-dihydroprogesterone, allopregnanolone, testosterone, 5α-dihydrotestosterone, androstenedione, dehydroepiandrosterone, and epiandrosterone) in 150 µL of human serum by ultrahigh-performance liquid chromatography with tandem mass spectrometry. The correlation coefficients above 0.999 indicated that the developed analytical procedure was linear in the range of 0.90 nmol/L to 28.46 µmol/L in human serum. The accuracy and precision of the method for all analytes ranged from 83 to 118% and from 0.9 to 14.1%, respectively. This described method could contribute to a deeper understanding of the pathophysiology of various diseases. Similarly, it can also be helpful in the search for new biomarkers and diagnostic options or therapeutic approaches.


Subject(s)
Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Neurosteroids/blood , Steroids/blood , Steroids/analysis , Male , Reproducibility of Results
6.
Plant Cell Physiol ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619131

ABSTRACT

Brassinosteroids (BRs) are plant steroidal hormones that play crucial roles in plant growth and development. Accurate quantification of BRs in plant tissues is essential for understanding their biological functions. This study presents a comprehensive overview of the latest methods used for the quantification of BRs in plants. We discuss the principles, advantages, and limitations of various analytical techniques, including immunoassays, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-tandem mass spectrometry (LC-MS/MS) that are used for the detection and quantification of BRs from complex plant matrices. We also explore the use of isotopically labeled internal standards to improve the accuracy and reliability of BR quantification.

7.
Exp Hematol Oncol ; 13(1): 34, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528594

ABSTRACT

BACKGROUND: Mantle cell lymphoma (MCL) is a chronically relapsing malignancy with deregulated cell cycle progression. We analyzed efficacy, mode of action, and predictive markers of susceptibility to palbociclib, an approved CDK 4/6 inhibitor, and its combination with venetoclax, a BCL2 inhibitor. METHODS: A panel of nine MCL cell lines were used for in vitro experiments. Four patient derived xenografts (PDX) obtained from patients with chemotherapy and ibrutinib-refractory MCL were used for in vivo proof-of-concept studies. Changes of the mitochondrial membrane potential, energy-metabolic pathways, AKT activity, and pro-apoptotic priming of MCL cells were evaluated by JC-1 staining, Seahorse XF analyser, genetically encoded fluorescent AKT reporter, and BH3 profiling, respectively. MCL clones with gene knockout or transgenic (over)expression of CDKN2A, MYC, CDK4, and RB1 were used to estimate impact of these aberrations on sensitivity to palbociclib, and venetoclax. RESULTS: Co-targeting MCL cells with palbociclib and venetoclax induced cytotoxic synergy in vitro and in vivo. Molecular mechanisms responsible for the observed synthetic lethality comprised palbociclib-mediated downregulation of anti-apoptotic MCL1, increased levels of proapoptotic BIM bound on both BCL2, and BCL-XL and increased pro-apoptotic priming of MCL cells mediated by BCL2-independent mechanisms, predominantly palbociclib-triggered metabolic and mitochondrial stress. Loss of RB1 resulted in palbociclib resistance, while deletion of CDKN2A or overexpression of CDK4, and MYC genes did not change sensitivity to palbociclib. CONCLUSIONS: Our data strongly support investigation of the chemotherapy-free palbociclib and venetoclax combination as an innovative treatment strategy for post-ibrutinib MCL patients without RB1 deletion.

8.
Plant Cell ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38513609

ABSTRACT

Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting ABA sensitivity. This involved expression of morph-specific transcription factors, hypoxia response and cell wall-remodeling genes, as well as altered abscisic acid (ABA) metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.

9.
Chem Biodivers ; 21(4): e202400235, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38412304

ABSTRACT

Over the last decades, soft corals have been proven a rich source of biologically active compounds, featuring a wide range of chemical structures. Herein, we investigated the chemistry of an alcyonarian of the genus Lemnalia (Neptheidae), specimens of which were collected from the coral reefs near Al Lith, on the south-west coast of Saudi Arabia. A series of chromatographic separations led to the isolation of 31 sesquiterpenes, featuring mainly the nardosinane and neolemnane carbon skeletons, among which three (13, 14 and 28) are new natural products. The metabolites isolated in sufficient amounts were evaluated in vitro in human tumor and non-cancerous cell lines for a number of biological activities, including their cytotoxic, anti-inflammatory, anti-angiogenic, and neuroprotective activities, as well as for their effect on androgen receptor (AR)-regulated transcription. Among the tested metabolites, compound 12 showed comparable neuroprotective activity to the positive control N-acetylcysteine, albeit at a 10-fold lower concentration.


Subject(s)
Anthozoa , Antineoplastic Agents , Sesquiterpenes , Animals , Humans , Saudi Arabia , Indian Ocean , Sesquiterpenes/chemistry , Anthozoa/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism
11.
Eur J Med Res ; 29(1): 31, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184629

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive deterioration of upper and lower motor neurons. A definitive diagnostic test or biomarker for ALS is currently unavailable, leading to a diagnostic delay following the onset of initial symptoms. Our study focused on cerebrospinal fluid (CSF) concentrations of clusterin, tau protein, phosphorylated tau protein, and beta-amyloid1-42 in ALS patients and a control group. METHODS: Our study involved 54 ALS patients and 58 control subjects. Among the ALS patients, 14 presented with bulbar-onset ALS, and 40 with limb-onset ALS. We quantified biomarker levels using enzyme-linked immunosorbent assay (ELISA) and compared the results using the Mann-Whitney U-test. RESULTS: Significant elevations in neurodegenerative markers, including tau protein (p < 0.0001), phosphorylated tau protein (p < 0.0001), and clusterin (p = 0.038), were observed in ALS patients compared to controls. Elevated levels of tau protein and phosphorylated tau protein were also noted in both bulbar and limb-onset ALS patients. However, no significant difference was observed for beta-amyloid1-42. ROC analysis identified tau protein (AUC = 0.767) and p-tau protein (AUC = 0.719) as statistically significant predictors for ALS. CONCLUSION: Our study demonstrates that neurodegenerative marker levels indicate an ongoing neurodegenerative process in ALS. Nonetheless, the progression of ALS cannot be predicted solely based on these markers. The discovery of a specific biomarker could potentially complement existing diagnostic criteria for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Clusterin , Delayed Diagnosis , tau Proteins , Biomarkers
12.
ACS Chem Neurosci ; 15(3): 582-592, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38194490

ABSTRACT

Some pathological conditions affecting the human body can also disrupt metabolic pathways and thus alter the overall metabolic profile. Knowledge of metabolic disturbances in specific diseases could thus enable the differential diagnosis of otherwise similar conditions. This work therefore aimed to comprehensively characterize changes in tryptophan metabolism in selected neurodegenerative diseases. Levels of 18 tryptophan-related neuroactive substances were determined by high throughput and sensitive ultrahigh-performance liquid chromatography-tandem mass spectrometry in time-linked blood serum and cerebrospinal fluid samples from 100 age-matched participants belonging to five cohorts: healthy volunteers (n = 21) and patients with Lewy body disease (Parkinson's disease and dementia with Lewy bodies; n = 31), four-repeat tauopathy (progressive supranuclear palsy and corticobasal syndrome; n = 10), multiple system atrophy (n = 13), and Alzheimer's disease (n = 25). Although these conditions have different pathologies and clinical symptoms, the discovery of new biomarkers is still important. The most statistically significant differences (with p-values of ≤0.05 to ≤0.0001) between the study cohorts were observed for three tryptophan metabolites: l-kynurenine in cerebrospinal fluid and 3-hydroxy-l-kynurenine and 5-hydroxy-l-tryptophan in blood serum. This led to the discovery of distinctive correlation patterns between the profiled cerebrospinal fluid and serum metabolites that could provide a basis for the differential diagnosis of neurodegenerative tauopathies and synucleinopathies. However, further large-scale studies are needed to determine the direct involvement of these metabolites in the studied neuropathologies, their response to medication, and their potential therapeutic relevance.


Subject(s)
Alzheimer Disease , Proteostasis Deficiencies , Tauopathies , Humans , Tryptophan , Kynurenine , Serum , Alzheimer Disease/diagnosis , Biomarkers
13.
Plants (Basel) ; 13(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38256760

ABSTRACT

The transition from seed to seedling represents a critical developmental step in the life cycle of higher plants, dramatically affecting plant ontogenesis and stress tolerance. The release from dormancy to acquiring germination ability is defined by a balance of phytohormones, with the substantial contribution of abscisic acid (ABA), which inhibits germination. We studied the embryonic axis of Pisum sativum L. before and after radicle protrusion. Our previous work compared RNA sequencing-based transcriptomics in the embryonic axis isolated before and after radicle protrusion. The current study aims to analyze ABA-dependent gene regulation during the transition of the embryonic axis from the germination to post-germination stages. First, we determined the levels of abscisates (ABA, phaseic acid, dihydrophaseic acid, and neo-phaseic acid) using ultra-high-performance liquid chromatography-tandem mass spectrometry. Second, we made a detailed annotation of ABA-associated genes using RNA sequencing-based transcriptome profiling. Finally, we analyzed the DNA methylation patterns in the promoters of the PsABI3, PsABI4, and PsABI5 genes. We showed that changes in the abscisate profile are characterized by the accumulation of ABA catabolites, and the ABA-related gene profile is accompanied by the upregulation of genes controlling seedling development and the downregulation of genes controlling water deprivation. The expression of ABI3, ABI4, and ABI5, which encode crucial transcription factors during late maturation, was downregulated by more than 20-fold, and their promoters exhibited high levels of methylation already at the late germination stage. Thus, although ABA remains important, other regulators seems to be involved in the transition from seed to seedling.

14.
J Biotechnol ; 381: 27-35, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38190851

ABSTRACT

Microalgae-derived biostimulants provide an eco-friendly biotechnology for improving crop productivity. The strategy of circular economy includes reducing biomass production costs of new and robust microalgae strains grown in nutrient-rich wastewater and mixotrophic culture where media is enriched with organic carbon. In this study, Chlorella sorokiniana was grown in 100 l bioreactors under sub-optimal conditions in a greenhouse. A combination of batch and semi-continuous cultivation was used to investigate the growth, plant hormone and biostimulating effect of biomass grown in diluted pig manure and in nutrient medium supplemented with Na-acetate. C. sorokiniana tolerated the low light (sum of PAR 0.99 ± 0.18 mol/photons/(m2/day)) and temperature (3.7-23.7° C) conditions to maintain a positive growth rate and daily biomass productivity (up to 149 mg/l/day and 69 mg/l/day dry matter production in pig manure and Na-acetate supplemented cultures respectively). The protein and lipid content was significantly higher in the biomass generated in batch culture and dilute pig manure (1.4x higher protein and 2x higher lipid) compared to the Na-acetate enriched culture. Auxins indole-3-acetic acid (IAA) and 2-oxindole-3-acetic acid (oxIAA) and salicylic acid (SA) were present in the biomass with significantly higher auxin content in the biomass generated using pig manure (> 350 pmol/g DW IAA and > 84 pmol/g DW oxIAA) compared to cultures enriched with Na-acetate and batch cultures (< 200 pmol/g DW IAA and < 27 pmol/g DW oxIAA). No abscisic acid and jasmonates were detected. All samples had plant biostimulating activity measured in the mungbean rooting bioassay with the Na-acetate supplemented biomass eliciting higher rooting activity (equivalent to 1-2 mg/l IBA) compared to the pig manure (equivalent to 0.5-1 mg/l IBA) and batch culture (equivalent to water control) generated biomass. Thus C. sorokiniana MACC-728 is a robust new strain for biotechnology, tolerating low light and temperature conditions. The strain can adapt to alternative nutrient (pig manure) and carbon (acetate) sources with the generated biomass having a high auxin concentration and plant biostimulating activity detected with the mungbean rooting bioassay.


Subject(s)
Chlorella , Microalgae , Swine , Animals , Manure , Biomass , Acetic Acid/metabolism , Microalgae/metabolism , Carbon/metabolism , Indoleacetic Acids/metabolism
15.
Plant J ; 117(5): 1432-1452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38044809

ABSTRACT

Cells save their energy during nitrogen starvation by selective autophagy of ribosomes and degradation of RNA to ribonucleotides and nucleosides. Nucleosides are hydrolyzed by nucleoside N-ribohydrolases (nucleosidases, NRHs). Subclass I of NRHs preferentially hydrolyzes the purine ribosides while subclass II is more active towards uridine and xanthosine. Here, we performed a crystallographic and kinetic study to shed light on nucleoside preferences among plant NRHs followed by in vivo metabolomic and phenotyping analyses to reveal the consequences of enhanced nucleoside breakdown. We report the crystal structure of Zea mays NRH2b (subclass II) and NRH3 (subclass I) in complexes with the substrate analog forodesine. Purine and pyrimidine catabolism are inseparable because nucleobase binding in the active site of ZmNRH is mediated via a water network and is thus unspecific. Dexamethasone-inducible ZmNRH overexpressor lines of Arabidopsis thaliana, as well as double nrh knockout lines of moss Physcomitrium patents, reveal a fine control of adenosine in contrast to other ribosides. ZmNRH overexpressor lines display an accelerated early vegetative phase including faster root and rosette growth upon nitrogen starvation or osmotic stress. Moreover, the lines enter the bolting and flowering phase much earlier. We observe changes in the pathways related to nitrogen-containing compounds such as ß-alanine and several polyamines, which allow plants to reprogram their metabolism to escape stress. Taken together, crop plant breeding targeting enhanced NRH-mediated nitrogen recycling could therefore be a strategy to enhance plant growth tolerance and productivity under adverse growth conditions.


Subject(s)
Arabidopsis , Nucleosides , Nucleosides/metabolism , Nitrogen/metabolism , Plant Breeding , Plants/metabolism , Uridine/metabolism , Arabidopsis/genetics
16.
Anal Chim Acta ; 1285: 342010, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38057057

ABSTRACT

BACKGROUND: The determination of plant hormones is still a very challenging analytical discipline, mainly due to their low concentration in complex plant matrices. Therefore, the involvement of very sensitive high-throughput techniques is required. Cytokinins (CKs) are semi-polar basic plant hormones regulating plant growth and development. Modern methods for CK determination are currently based on ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), which enables the separation of CK isomeric forms occurring endogenously in plants. Here, ultra-high performance supercritical fluid chromatography coupled with tandem mass spectrometry (UHPSFC-MS/MS) was used for the simultaneous determination of 37 CK metabolites. RESULTS: The chromatographic conditions were tested on three different columns with various retention mechanisms. Hybrid silica modified with 2-picolylamine was selected as the stationary phase. Several parameters such as column temperature, back pressure regulation, mobile phase composition and make-up solvent were investigated to achieve efficient separation of CK isomers and reasonable sensitivity. Compared to UHPLC-MS/MS, a 9-min chromatographic analysis using a mobile phase of supercritical CO2 and 5 mM ammonia in methanol represents a three-fold acceleration of total run time. The quantification limit of UHPSFC-MS/MS method was in the range of 0.03-0.19 fmol per injection and the method validation showed high accuracy and precision (below 15 % for most analytes). The method was finally applied to the complex plant matrix of the model plant Arabidopsis thaliana and the obtained profiles of CK metabolites were compared with the results from the conventional UHPLC-MS/MS method. SIGNIFICANCE: The presented work offers a novel approach for quantification of endogenous CKs in plants. Compared to the conventional UHPLC-MS/MS, the total run time is shorter and the matrix effect lower for the key CK metabolites. This approach opens the opportunity to utilize UHPSFC-MS/MS instrumentation for targeted plant hormonomics including other plant hormone families.


Subject(s)
Chromatography, Supercritical Fluid , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Cytokinins , Plant Growth Regulators , Chromatography, Supercritical Fluid/methods , Chromatography, High Pressure Liquid/methods , Plants
17.
Arch Pharm (Weinheim) ; 356(12): e2300378, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37797174

ABSTRACT

A library of 3-aryl-3-azetidinyl acetic acid methyl ester derivatives was prepared from N-Boc-3-azetidinone employing the Horner-Wadsworth-Emmons reaction, rhodium(I)-catalyzed conjugate addition of arylboronic acids, and subsequent elaborations to obtain N-unprotected hydrochlorides, N-alkylated and N-acylated azetidine derivatives. The compounds were evaluated for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity, revealing several derivatives to possess AChE inhibition comparable to that of the AChE inhibitor rivastigmine. The binding mode of the AChE inhibitor donepezil and selected active compounds 26 and 27 within the active site of AChE was studied using molecular docking. Furthermore, the neuroprotective activity of the prepared compounds was evaluated in models associated with Parkinson's disease (salsolinol-induced) and aspects of Alzheimer's disease (glutamate-induced oxidative damage). Compound 28 showed the highest neuroprotective effect in both salsolinol- and glutamate-induced neurodegeneration models, and its protective effect in the glutamate model was revealed to be driven by a reduction in oxidative stress and caspase-3/7 activity.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Humans , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , Molecular Docking Simulation , Structure-Activity Relationship , Cholinesterase Inhibitors/chemistry , Alzheimer Disease/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Glutamates/therapeutic use
18.
Plant Cell Physiol ; 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37847120

ABSTRACT

B-Box-containing zinc finger transcription factors (BBX) are involved in light-mediated growth, affecting processes such as hypocotyl elongation in Arabidopsis thaliana. However, the molecular and hormonal framework that regulates plant growth through BBX proteins is incomplete. Here, we demonstrate that BBX21 inhibits the hypocotyl elongation through the brassinosteroid (BR) pathway. BBX21 reduces the sensitivity to 24-epiBL, a synthetic active BR, principally at very-low concentrations in simulated shade. The biosynthesis profile of BRs showed that two active BR -brassinolide (BL) and 28-homobrassinolide (28-homoBL)- and 8 of 11 intermediates can be repressed by BBX21 under white light (WL) or simulated shade. Furthermore, BBX21 represses the expression of CYTOCHROME P450 90B1 (DWF4/CYP90B1), BRASSINOSTEROID-6-OXIDASE 1 (BR6OX1, CYP85A1) and BR6OX2 (CYP85A2) genes involved in the BR biosynthesis in WL while specifically promoting DWF4 and PHYB ACTIVATION TAGGED SUPPRESSOR 1 (CYP2B1/BAS1) expression in WL supplemented with far-red (WL+FR), a treatment that simulates shade. In addition, BBX21 represses BR signalling genes such as PACLOBUTRAZOL RESISTANCE1 (PRE1), PRE3 and ARABIDOPSIS MYB-LIKE 2 (MYBL2), and auxin-related and expansin genes, such as INDOLE-3-ACETIC ACID INDUCIBLE 1 (IAA1), IAA4 and EXPANSIN 11 (EXP11) in short-term shade. By a genetic approach we found that BBX21 acts genetically upstream of BRASSINAZOLE-RESISTANT 1 (BZR1) for the promotion of DWF4 and BAS1 gene expression in shade. We propose that BBX21 integrates the BR homeostasis and shade-light signalling allowing the fine-tuning of hypocotyl elongation in Arabidopsis.

19.
Plant J ; 116(6): 1825-1841, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37682018

ABSTRACT

Auxins and cytokinins are two major families of phytohormones that control most aspects of plant growth, development and plasticity. Their distribution in plants has been described, but the importance of cell- and subcellular-type specific phytohormone homeostasis remains undefined. Herein, we revealed auxin and cytokinin distribution maps showing their different organelle-specific allocations within the Arabidopsis plant cell. To do so, we have developed Fluorescence-Activated multi-Organelle Sorting (FAmOS), an innovative subcellular fractionation technique based on flow cytometric principles. FAmOS allows the simultaneous sorting of four differently labelled organelles based on their individual light scatter and fluorescence parameters while ensuring hormone metabolic stability. Our data showed different subcellular distribution of auxin and cytokinins, revealing the formation of phytohormone gradients that have been suggested by the subcellular localization of auxin and cytokinin transporters, receptors and metabolic enzymes. Both hormones showed enrichment in vacuoles, while cytokinins were also accumulated in the endoplasmic reticulum.


Subject(s)
Arabidopsis , Plant Growth Regulators , Plant Growth Regulators/metabolism , Fluorescence , Cytokinins/metabolism , Indoleacetic Acids/metabolism , Arabidopsis/metabolism , Endoplasmic Reticulum/metabolism , Hormones/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant
20.
J Neurochem ; 167(2): 168-182, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37680022

ABSTRACT

Neurodegenerative diseases are a broad heterogeneous group affecting the nervous system. They are characterized, from a pathophysiological perspective, by the selective involvement of a subpopulation of nerve cells with a consequent clinical picture of a disease. Clinical diagnoses of neurodegenerative diseases are quite challenging and often not completely accurate because of their marked heterogeneity and frequently overlapping clinical pictures. Efforts are being made to define sufficiently specific and sensitive markers for individual neurodegenerative diseases or groups of diseases in order to increase the accuracy and speed of clinical diagnosis. Thus said, this present research aimed to identify biomarkers in the cerebrospinal fluid (CSF) and serum (α-synuclein [α-syn], tau protein [t-tau], phosphorylated tau protein [p-tau], ß-amyloid [Aß], clusterin, chromogranin A [chromogrA], cystatin C [cyst C], neurofilament heavy chains [NFH], phosphorylated form of neurofilament heavy chains [pNF-H], and ratio of tau protein/amyloid beta [Ind tau/Aß]) that could help in the differential diagnosis and differentiation of the defined groups of α-synucleinopathies and four-repeat (4R-) tauopathies characterized by tau protein isoforms with four microtubule-binding domains. In this study, we analyzed a cohort of 229 patients divided into four groups: (1) Parkinson's disease (PD) + dementia with Lewy bodies (DLB) (n = 82), (2) multiple system atrophy (MSA) (n = 25), (3) progressive supranuclear palsy (PSP) + corticobasal syndrome (CBS) (n = 30), and (4) healthy controls (HC) (n = 92). We also focused on analyzing the biomarkers in relation to each other with the intention of determining whether they are useful in distinguishing among individual proteinopathies. Our results indicate that the proposed set of biomarkers, when evaluated in CSF, is likely to be useful for the differential diagnosis of MSA versus 4RT. However, these biomarkers do not seem to provide any useful diagnostic information when assessed in blood serum.

SELECTION OF CITATIONS
SEARCH DETAIL
...