Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Med Sci Sports Exerc ; 44(7): 1267-74, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22217569

ABSTRACT

PURPOSE: The purpose of the study was to determine whether the conditions during scuba diving without exercise (e.g., submersion, restricted breathing) stimulate the activities of the sympathoadrenergic system and the hypothalamic-pituitary-adrenal axis. This might facilitate panic reactions in dangerous situations. METHODS: Fifteen experienced rescue divers participated in three experiments with two submersions each in a diving tower where ambient pressure could be varied. During submersion (duration = 15 min), they were breathing either pure oxygen (ambient pressure = 1.1 bar) or air (1.1 and 5.3 bar) or Heliox21 (21% O(2) and 79% He, 1.1 and 5.3 bar). The subjects stayed upright immediately below the water surface holding one hand with a cannulated radial artery out in the air. Noradrenaline, adrenaline, and dopamine concentrations in arterial blood and heart rate (HR) variability as indicators of sympathoadrenergic activity and cortisol and adrenocorticotropic hormone concentrations as strain indicators were measured. RESULTS: [Noradrenaline] and [adrenaline] (initial values (mean ± SE) = 1616 ± 93 and 426 ± 38 pmol·L(-1)) decreased significantly by up to 30% and 50%, respectively, after 11 min of submersion, independent of pressure and inspired gas. HR variability showed roughly corresponding changes and also indications for parasympathetic stimulation, but artifacts by interference among HR monitors reduced the number of usable measurements. The other hormone concentrations did not change significantly. CONCLUSIONS: There was no increase of stress hormone concentrations in experienced subjects. The reduction of [noradrenaline] and [adrenaline] during scuba diving seems to be a reaction to orthostatic relief caused by external hydrostatic pressure on peripheral vasculature. The activity of the vegetative nervous system might be estimated from HR variability if interference among pulse watches can be avoided.


Subject(s)
Diving/physiology , Gases , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Respiration , Stress, Physiological/physiology , Sympathetic Nervous System/metabolism , Adrenocorticotropic Hormone/blood , Adult , Air , Epinephrine/blood , Germany , Helium/administration & dosage , Humans , Hydrocortisone/blood , Male , Norepinephrine/blood , Oxygen/administration & dosage
2.
Physiol Meas ; 29(2): 193-203, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18256451

ABSTRACT

Bioelectrical impedance analysis (BIA) has been shown to be highly related to skeletal muscle mass and blood volume, both of which are important determinants of maximal oxygen uptake (VO(2max)). The aim of the present study was therefore to investigate the ability of whole-body and segmental multi-frequency BIA to improve current nonexercise VO(2max) prediction models. Data for VO(2max) (mL min(-1)), anthropometry, self-reported physical activity (PA-R) and BIA were collected in 115 men and women. Multiple linear regression analysis (MLR) was used to develop the most parsimonious prediction model. Segmental BIA was not superior to whole-body measurements. Correlation coefficients between VO(2max) and resistance indices were significantly higher at 500 kHz compared to 50 kHz (p < 0.05). Intracellular resistance index, however, showed the highest correlation with VO(2max) (r = 0.89). After adjusting for age, gender and PA-R, MLR revealed that the inclusion of intracellular resistance index was slightly, but significantly (p < 0.001), superior to models based on anthropometry. Subgroup analyses indicated that the true benefit of BIA might be most prevalent in subjects with particularly low VO(2max) (<2500 mL min(-1)). In short, whole-body BIA marginally improves the accuracy of nonexercise VO(2max) prediction models and its advantage is most pronounced in individuals with particularly low VO(2max).


Subject(s)
Oxygen Consumption/physiology , Oxygen/metabolism , Physical Endurance/physiology , Plethysmography, Impedance/methods , Pulmonary Gas Exchange/physiology , Adult , Aged , Computer Simulation , Female , Humans , Male , Middle Aged , Models, Biological
3.
J Appl Physiol (1985) ; 103(4): 1428-35, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17626831

ABSTRACT

Most studies employing bioelectrical impedance analysis (BIA) for estimating appendicular skeletal muscle mass using descriptive BIA models rely on statistical rather than biophysical principles. The aim of the present study was to evaluate the feasibility of estimating arm and leg muscle volume (MV) based on multiple bioimpedance measurements and using a recently proposed mathematical model and to compare this technique to conventional segmental BIA at high and low frequencies. MV of the arm and leg, respectively, was determined in 15 young, healthy, active men [age 22 +/- 2 (SD) yr, total body fat 15.6 +/- 5.1%] by magnetic resonance imaging (MRI) and BIA using a conventional and new bioimpedance model. MRI-determined MV for leg and arm was 6,268 +/- 1,099 and 1,173 +/- 172 cm(3), respectively. Estimated MV by the new BIA model [leg: 6,294 +/- 1,155 cm(3) (50 kHz), 6,278 +/- 1,103 cm(3) (500 kHz); arm: 1,216 +/- 172 cm(3) (50 kHz), 1,155 +/- 157 cm(3) (500 kHz)] was not statistically different from MRI-determined MV (leg: P= 0.958; arm: P= 0.188). The new BIA model was superior to conventional BIA and performed best at 500 kHz for estimating leg MV as indicated by the lower relative total error [new: 3.6% (500 kHz), 5.2% (50 kHz); conventional: 7.6% (500 kHz) and 8.3% (50 kHz)]. In contrast, the new BIA model, both at 50 and 500 kHz, did not improve the accuracy for estimating arm MV [new: 10.8% (500 kHz), 10.6% (50 kHz); conventional: 11.8% (500 kHz), 11.4% (50 kHz)]. It was concluded that modeling of multiple BIA measurements has advantages for the determination of lower limb muscle volume in healthy, active adult men.


Subject(s)
Arm , Electric Impedance , Leg , Muscle, Skeletal/anatomy & histology , Adult , Anatomy, Cross-Sectional , Body Mass Index , Feasibility Studies , Humans , Magnetic Resonance Imaging , Male , Models, Biological , Reproducibility of Results
4.
Eur J Appl Physiol ; 96(3): 265-73, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16261389

ABSTRACT

Previous non-exercise models for the prediction of maximal oxygen uptake VO(2max) have failed to accurately discriminate cardiorespiratory fitness within large cohorts. The aim of the present study was to evaluate the feasibility of a completely indirect method for predicting VO(2max) that was based on bioelectrical impedance analysis (BIA) in 66 young, healthy fit men and women. Multiple, stepwise regression analysis was used to determine the usefulness of BIA and additional covariates to estimate VO(2max) (ml min(-1)). BIA was highly correlated to VO(2max) (r = 0.914; P < 0.001) and entered the regression equation first. The inclusion of gender and a physical activity rating further improved the model which accounted for 88% of the variance in VO(2max) and resulted in a relative standard error of the estimate (SEE) of 7.2%. Substantial agreement between the methods was confirmed by the fact that nearly all the differences were within +/-2 SD. Furthermore, in contrast to previously published non-exercise models, no trend of a reduction in prediction accuracy with increasing VO(2max) values was apparent. It was concluded that a non-exercise model based on BIA might be a rapid and useful technique to estimate VO(2max), when a direct test does not seem feasible. However, though the present results are useful to determine the viability of the method, further refinement of the BIA approach and its validation in a large, diverse population is needed before it can be applied to the clinical and epidemiological settings.


Subject(s)
Electric Impedance , Exercise , Oxygen Consumption , Adult , Anthropometry , Body Composition , Female , Humans , Male , Predictive Value of Tests , Regression Analysis , Reproducibility of Results , Respiratory Function Tests
6.
Med Sci Sports Exerc ; 35(2): 263-9, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12569215

ABSTRACT

PURPOSE: The purpose of the present field study was to explore whether extensive interval training (IT) performed with a similar behavior of blood lactate (LA) at an altitude of 1800 m (ALT) and near sea level (SL) goes along with a comparable hormonal, metabolic, and acute phase response in highly trained endurance athletes. METHODS: Twelve distance runners (VO2 64.6 +/- 6.9 mL.kg(-1) ) performed IT (10 x 1000 m, 2-min rest) at SL with a running velocity (V) corresponding to 112% of the individual anaerobic threshold (IAT). After an acclimatization period of 7 d, IT was repeated with a lower V (107% IAT) at ALT. Blood samples were drawn at rest, 0, 0.3, 3, and 24 h after IT. LA during IT was similar at SL and ALT (5.4 +/- 1.3/5.3 +/- 1.2 mmol.L(-1)), whereas HR tended to be higher at SL. RESULTS: Postexercise rises in plasma noradrenaline (NA), NA sulfate, adrenaline, glucose, interleukin-6 (IL-6), and neutrophils were significantly more pronounced at ALT. The increase of cortisol and human growth hormone showed an insignificant trend toward higher values at ALT. A slight but significant increase of plasma erythropoietin was only apparent after IT at ALT. No differences between either condition were observed for exercise-related changes in free fatty acids, IL-8, lympho-, or monocyte counts. CONCLUSIONS: In spite of a matched accumulation pattern of LA between ALT and N, stress responses, such as sympathetic activation and hepatic glucose release, still appear to be greater at ALT. This additional impact of moderate ALT on the stress response to IT should be taken into account if repeated training sessions are performed within a short period of time.


Subject(s)
Altitude , Hydrocortisone/blood , Lactic Acid/blood , Physical Endurance , Running/physiology , Stress, Psychological , Adult , Cytokines/blood , Female , Glucose/metabolism , Humans , Male , Norepinephrine/blood
7.
Life Sci ; 71(1): 55-65, 2002 May 24.
Article in English | MEDLINE | ID: mdl-12020748

ABSTRACT

We investigated whether similar increments in venous plasma norepinephrine (NE) concentration caused by exercise and by intravenous NE infusion will elevate plasma norepinephrine sulfate (NES) to similar concentrations. In randomized order venous plasma NE concentration was elevated to similar concentrations by bicycle exercise (BE; 65% VO(2)max) and by intravenous NE infusion at rest (INF; 0.14 microg/min/kg). N = 11 subjects participated in the study. Increments in plasma NE and the area under curve of plasma NE were similar during BE (11.2 +/- 1.3 nM; 411 +/- 23 nM/min; means +/- S.E.) and INF (12.6 +/- 1.9 nM; 429 +/- 27 nM/min). Plasma NES was significantly elevated to similar concentrations with BE (from 5.7 +/- 1.0 to 8.5 +/- 1.3 nM) and with INF (from 5.6 +/- 0.9 to 8.9 +/- 1.0 nM). Plasma NE and NES concentration during control conditions remained unchanged. Heart rate decreased significantly to 43 +/- 1 beats/min with INF and increased significantly to 162 +/- 3 beats/min with BE. Systolic blood pressure increased with both, INF and BE (155 +/- 3 mmHg; 179 +/- 6 mmHg, respectively). Present findings firstly show that intravenously infused NE is sulfoconjugated in humans, indicating that a major part of NE is sulfoconjugated in blood or at sites easily accessible from blood. Secondly, plasma NE may be a useful additional marker for NES release.


Subject(s)
Exercise/physiology , Norepinephrine/blood , Adult , Blood Pressure/drug effects , Blood Pressure/physiology , Catecholamines/blood , Exercise Test , Heart Rate/drug effects , Heart Rate/physiology , Humans , Injections, Intravenous , Male , Norepinephrine/metabolism , Norepinephrine/pharmacology , Oxygen/blood , Sulfates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...