Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(7): 6277-6291, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38305760

ABSTRACT

We have previously presented a computational protocol that is based on an embedded cluster model and operates in the framework of TD-DFT in conjunction with the excited state dynamics (ESD) approach. The protocol is able to predict the experimental absorption and emission spectral shapes of Eu2+-doped phosphors. In this work, the applicability domain of the above protocol is expanded to Eu2+-doped phosphors bearing multiple candidate Eu doping centers. It will be demonstrated that this protocol provides full control of the parameter space that describes the emission process. The stability of Eu doping at various centers is explored through local energy decomposition (LED) analysis of DLPNO-CCSD(T) energies. This enables further development of the understanding of the electronic structure of the targeted phosphors, the diverse interactions between Eu and the local environment, and their impact on Eu doping probability, and control of the emission properties. Hence, it can be employed to systematically improve deficiencies of existing phosphor materials, defined by the presence of various intensity emission bands at undesired frequencies, towards classes of candidate Eu2+-doped phosphors with desired narrow band red emission. For this purpose, the chosen study set consists of three UCr4C4-based narrow-band phosphors, namely the known alkali lithosilicates RbNa[Li3SiO4]2:Eu2+ (RNLSO2), RbNa3[Li3SiO4]4:Eu2+ (RNLSO) and their isotypic nitridolithoaluminate phosphors consisting of CaBa[LiAl3N4]2:Eu2+ (CBLA2) and the proposed Ca3Ba[LiAl3N4]4:Eu2+ (CBLA), respectively. The theoretical analysis presented in this work led us to propose a modification of the CBLA2 phosphor that should have improved and unprecedented narrow band red emission properties. Finally, we believe that the analysis presented here is important for the future rational design of novel Eu2+-doped phosphor materials, with a wide range of applications in science and technology.

2.
J Am Chem Soc ; 144(18): 8038-8053, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35471974

ABSTRACT

In this work, we present a computational protocol that is able to predict the experimental absorption and emission spectral shapes of Eu2+-doped phosphors. The protocol is based on time-dependent density functional theory and operates in conjunction with an excited-state dynamics approach. It is demonstrated that across the study set consisting of representative examples of nitride, oxo-nitride, and oxide Eu2+-doped phosphors, the energy distribution and the band shape of the emission spectrum are related to the nature of the 4f-5d transitions that are probed in the absorption process. Since the 4f orbitals are very nearly nonbonding, the decisive quantity is the covalency of the 5d acceptor orbitals that become populated in the electronically excited state that leads to emission. The stronger the (anti) bonding interaction between the lanthanide and the ligands is in the excited state, the larger will be the excited state distortion. Consequently, the corresponding emission will get broader due to the vibronic progression that is induced by the structural distortion. In addition, the energy separation of the absorption bands that are dominated by states with valence 4f-5d and a metal to ligand charge transfer character defines a measure for the thermal quenching of the studied Eu2+-doped phosphors. Based on this analysis, simple descriptors are identified that show a strong correlation with the energy position and bandwidth of the experimental emission bands without the need for elaborate calculations. Overall, we believe that this study serves as an important reference for designing new Eu2+-doped phosphors with desired photoluminescence properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...