Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4249, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762504

ABSTRACT

Magnetic field-induced changes in the electrical resistance of materials reveal insights into the fundamental properties governing their electronic and magnetic behavior. Various classes of magnetoresistance have been realized, including giant, colossal, and extraordinary magnetoresistance, each with distinct physical origins. In recent years, extreme magnetoresistance (XMR) has been observed in topological and non-topological materials displaying a non-saturating magnetoresistance reaching 103-108% in magnetic fields up to 60 T. XMR is often intimately linked to a gapless band structure with steep bands and charge compensation. Here, we show that a linear XMR of 80,000% at 15 T and 2 K emerges at the high-mobility interface between the large band-gap oxides γ-Al2O3 and SrTiO3. Despite the chemically and electronically very dissimilar environment, the temperature/field phase diagrams of γ-Al2O3/SrTiO3 bear a striking resemblance to XMR semimetals. By comparing magnetotransport, microscopic current imaging, and momentum-resolved band structures, we conclude that the XMR in γ-Al2O3/SrTiO3 is not strongly linked to the band structure, but arises from weak disorder enforcing a squeezed guiding center motion of electrons. We also present a dynamic XMR self-enhancement through an autonomous redistribution of quasi-mobile oxygen vacancies. Our findings shed new light on XMR and introduce tunability using dynamic defect engineering.

2.
Nature ; 626(7999): 517-522, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356066

ABSTRACT

Lifted Kramers spin degeneracy (LKSD) has been among the central topics of condensed-matter physics since the dawn of the band theory of solids1,2. It underpins established practical applications as well as current frontier research, ranging from magnetic-memory technology3-7 to topological quantum matter8-14. Traditionally, LKSD has been considered to originate from two possible internal symmetry-breaking mechanisms. The first refers to time-reversal symmetry breaking by magnetization of ferromagnets and tends to be strong because of the non-relativistic exchange origin15. The second applies to crystals with broken inversion symmetry and tends to be comparatively weaker, as it originates from the relativistic spin-orbit coupling (SOC)16-19. A recent theory work based on spin-symmetry classification has identified an unconventional magnetic phase, dubbed altermagnetic20,21, that allows for LKSD without net magnetization and inversion-symmetry breaking. Here we provide the confirmation using photoemission spectroscopy and ab initio calculations. We identify two distinct unconventional mechanisms of LKSD generated by the altermagnetic phase of centrosymmetric MnTe with vanishing net magnetization20-23. Our observation of the altermagnetic LKSD can have broad consequences in magnetism. It motivates exploration and exploitation of the unconventional nature of this magnetic phase in an extended family of materials, ranging from insulators and semiconductors to metals and superconductors20,21, that have been either identified recently or perceived for many decades as conventional antiferromagnets21,24,25.

3.
Nat Commun ; 14(1): 4827, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563126

ABSTRACT

Three-dimensional (3D) electronic band structure is fundamental for understanding a vast diversity of physical phenomena in solid-state systems, including topological phases, interlayer interactions in van der Waals materials, dimensionality-driven phase transitions, etc. Interpretation of ARPES data in terms of 3D electron dispersions is commonly based on the free-electron approximation for the photoemission final states. Our soft-X-ray ARPES data on Ag metal reveals, however, that even at high excitation energies the final states can be a way more complex, incorporating several Bloch waves with different out-of-plane momenta. Such multiband final states manifest themselves as a complex structure and added broadening of the spectral peaks from 3D electron states. We analyse the origins of this phenomenon, and trace it to other materials such as Si and GaN. Our findings are essential for accurate determination of the 3D band structure over a wide range of materials and excitation energies in the ARPES experiment.

4.
Nat Commun ; 13(1): 6560, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36323685

ABSTRACT

The interactions between electrons and antiferromagnetic magnons (AFMMs) are important for a large class of correlated materials. For example, they are the most plausible pairing glues in high-temperature superconductors, such as cuprates and iron-based superconductors. However, unlike electron-phonon interactions (EPIs), clear-cut observations regarding how electron-AFMM interactions (EAIs) affect the band structure are still lacking. Consequently, critical information on the EAIs, such as its strength and doping dependence, remains elusive. Here we directly observe that EAIs induce a kink structure in the band dispersion of Ba1-xKxMn2As2, and subsequently unveil several key characteristics of EAIs. We found that the coupling constant of EAIs can be as large as 5.4, and it shows strong doping dependence and temperature dependence, all in stark contrast to the behaviors of EPIs. The colossal renormalization of electron bands by EAIs enhances the density of states at Fermi energy, which is likely driving the emergent ferromagnetic state in Ba1-xKxMn2As2 through a Stoner-like mechanism with mixed itinerant-local character. Our results expand the current knowledge of EAIs, which may facilitate the further understanding of many correlated materials where EAIs play a critical role.

5.
ACS Nano ; 14(12): 17554-17564, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33236903

ABSTRACT

The coupling of real and momentum space is utilized to tailor electronic properties of the collinear metallic antiferromagnet Mn2Au by aligning the real space Néel vector indicating the direction of the staggered magnetization. Pulsed magnetic fields of 60 T were used to orient the sublattice magnetizations of capped epitaxial Mn2Au(001) thin films perpendicular to the applied field direction by a spin-flop transition. The electronic structure and its corresponding changes were investigated by angular-resolved photoemission spectroscopy with photon energies in the vacuum-ultraviolet, soft, and hard X-ray range. The results reveal an energetic rearrangement of conduction electrons propagating perpendicular to the Néel vector. They confirm previous predictions on the origin of the Néel spin-orbit torque and anisotropic magnetoresistance in Mn2Au and reflect the combined antiferromagnetic and spin-orbit interaction in this compound leading to inversion symmetry breaking.

6.
Sci Adv ; 5(7): eaaw4718, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31309151

ABSTRACT

Weyl fermions as emergent quasiparticles can arise in Weyl semimetals (WSMs) in which the energy bands are nondegenerate, resulting from inversion or time-reversal symmetry breaking. Nevertheless, experimental evidence for magnetically induced WSMs is scarce. Here, using photoemission spectroscopy, we observe that the degeneracy of Bloch bands is already lifted in the paramagnetic phase of EuCd2As2. We attribute this effect to the itinerant electrons experiencing quasi-static and quasi-long-range ferromagnetic fluctuations. Moreover, the spin-nondegenerate band structure harbors a pair of ideal Weyl nodes near the Fermi level. Hence, we show that long-range magnetic order and the spontaneous breaking of time-reversal symmetry are not essential requirements for WSM states in centrosymmetric systems and that WSM states can emerge in a wider range of condensed matter systems than previously thought.

7.
Phys Rev Lett ; 122(17): 176402, 2019 May 03.
Article in English | MEDLINE | ID: mdl-31107063

ABSTRACT

Distinct to type-I Weyl semimetals (WSMs) that host quasiparticles described by the Weyl equation, the energy dispersion of quasiparticles in type-II WSMs violates Lorentz invariance and the Weyl cones in the momentum space are tilted. Since it was proposed that type-II Weyl fermions could emerge from (W,Mo)Te_{2} and (W,Mo)P_{2} families of materials, a large number of experiments have been dedicated to unveiling the possible manifestation of type-II WSMs, e.g., surface-state Fermi arcs. However, the interpretations of the experimental results are very controversial. Here, using angle-resolved photoemission spectroscopy supported by the first-principles calculations, we probe the tilted Weyl cone bands in the bulk electronic structure of WP_{2} directly, which are at the origin of Fermi arcs at the surfaces and transport properties related to the chiral anomaly in type-II WSMs. Our results ascertain that, due to the spin-orbit coupling, the Weyl nodes originate from the splitting of fourfold degenerate band-crossing points with Chern numbers C=±2 induced by the crystal symmetries of WP_{2}, which is unique among all the discovered WSMs. Our finding also provides a guiding line to observe the chiral anomaly that could manifest in novel transport properties.

8.
Sci Adv ; 5(5): eaau6459, 2019 May.
Article in English | MEDLINE | ID: mdl-31058219

ABSTRACT

Topological semimetals are characterized by symmetry-protected band crossings, which can be preserved in different dimensions in momentum space, forming zero-dimensional nodal points, one-dimensional nodal lines, or even two-dimensional nodal surfaces. Materials harboring nodal points and nodal lines have been experimentally verified, whereas experimental evidence of nodal surfaces is still lacking. Here, using angle-resolved photoemission spectroscopy (ARPES), we reveal the coexistence of Dirac nodal surfaces and nodal lines in the bulk electronic structures of ZrSiS. As compared with previous ARPES studies on ZrSiS, we obtained pure bulk states, which enable us to extract unambiguously intrinsic information of the bulk nodal surfaces and nodal lines. Our results show that the nodal lines are the only feature near the Fermi level and constitute the whole Fermi surfaces. We not only prove that the low-energy quasiparticles in ZrSiS are contributed entirely by Dirac fermions but also experimentally realize the nodal surface in topological semimetals.

9.
Nat Commun ; 9(1): 5394, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30568161

ABSTRACT

One-dimensional (1D) magnetic insulators have attracted significant interest as a platform for studying quasiparticle fractionalization, quantum criticality, and emergent phenomena. The spin-1/2 Heisenberg chain with antiferromagnetic nearest neighbour interactions is an important reference system; its elementary magnetic excitations are spin-1/2 quasiparticles called spinons that are created in even numbers. However, while the excitation continuum associated with two-spinon states is routinely observed, the study of four-spinon and higher multi-spinon states is an open area of research. Here we show that four-spinon excitations can be accessed directly in Sr2CuO3 using resonant inelastic x-ray scattering (RIXS) in a region of phase space clearly separated from the two-spinon continuum. Our finding is made possible by the fundamental differences in the correlation function probed by RIXS in comparison to other probes. This advance holds promise as a tool in the search for novel quantum states and quantum spin liquids.

10.
Phys Rev Lett ; 121(13): 136401, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30312078

ABSTRACT

Using soft x-ray angle-resolved photoemission spectroscopy we probed the bulk electronic structure of T_{d}-MoTe_{2}. We found that on-site Coulomb interaction leads to a Lifshitz transition, which is essential for a precise description of the electronic structure. A hybrid Weyl semimetal state with a pair of energy bands touching at both type-I and type-II Weyl nodes is indicated by comparing the experimental data with theoretical calculations. Unveiling the importance of Coulomb interaction opens up a new route to comprehend the unique properties of MoTe_{2}, and is significant for understanding the interplay between correlation effects, strong spin-orbit coupling and superconductivity in this van der Waals material.

11.
Phys Rev Lett ; 121(7): 077004, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30169083

ABSTRACT

We present a soft x-ray angle-resolved photoemission spectroscopy study of overdoped high-temperature superconductors. In-plane and out-of-plane components of the Fermi surface are mapped by varying the photoemission angle and the incident photon energy. No k_{z} dispersion is observed along the nodal direction, whereas a significant antinodal k_{z} dispersion is identified for La-based cuprates. Based on a tight-binding parametrization, we discuss the implications for the density of states near the van Hove singularity. Our results suggest that the large electronic specific heat found in overdoped La_{2-x}Sr_{x}CuO_{4} cannot be assigned to the van Hove singularity alone. We therefore propose quantum criticality induced by a collapsing pseudogap phase as a plausible explanation for observed enhancement of electronic specific heat.

12.
Nat Commun ; 9(1): 2653, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29992961

ABSTRACT

Nanostructures based on buried interfaces and heterostructures are at the heart of modern semiconductor electronics as well as future devices utilizing spintronics, multiferroics, topological effects, and other novel operational principles. Knowledge of electronic structure of these systems resolved in electron momentum k delivers unprecedented insights into their physics. Here we explore 2D electron gas formed in GaN/AlGaN high-electron-mobility transistor heterostructures with an ultrathin barrier layer, key elements in current high-frequency and high-power electronics. Its electronic structure is accessed with angle-resolved photoelectron spectroscopy whose probing depth is pushed to a few nanometers using soft-X-ray synchrotron radiation. The experiment yields direct k-space images of the electronic structure fundamentals of this system-the Fermi surface, band dispersions and occupancy, and the Fourier composition of wavefunctions encoded in the k-dependent photoemission intensity. We discover significant planar anisotropy of the electron Fermi surface and effective mass connected with relaxation of the interfacial atomic positions, which translates into nonlinear (high-field) transport properties of the GaN/AlGaN heterostructures as an anisotropy of the saturation drift velocity of the 2D electrons.

13.
Nat Commun ; 9(1): 972, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29511188

ABSTRACT

The minimal ingredients to explain the essential physics of layered copper-oxide (cuprates) materials remains heavily debated. Effective low-energy single-band models of the copper-oxygen orbitals are widely used because there exists no strong experimental evidence supporting multi-band structures. Here, we report angle-resolved photoelectron spectroscopy experiments on La-based cuprates that provide direct observation of a two-band structure. This electronic structure, qualitatively consistent with density functional theory, is parametrised by a two-orbital ([Formula: see text] and [Formula: see text]) tight-binding model. We quantify the orbital hybridisation which provides an explanation for the Fermi surface topology and the proximity of the van-Hove singularity to the Fermi level. Our analysis leads to a unification of electronic hopping parameters for single-layer cuprates and we conclude that hybridisation, restraining d-wave pairing, is an important optimisation element for superconductivity.

14.
Phys Rev Lett ; 120(6): 066403, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29481263

ABSTRACT

A key issue in heavy fermion research is how subtle changes in the hybridization between the 4f (5f) and conduction electrons can result in fundamentally different ground states. CeRhIn_{5} stands out as a particularly notable example: when replacing Rh with either Co or Ir, antiferromagnetism gives way to superconductivity. In this photoemission study of CeRhIn_{5}, we demonstrate that the use of resonant angle-resolved photoemission spectroscopy with polarized light allows us to extract detailed information on the 4f crystal field states and details on the 4f and conduction electron hybridization, which together determine the ground state. We directly observe weakly dispersive Kondo resonances of f electrons and identify two of the three Ce 4f_{5/2}^{1} crystal-electric-field levels and band-dependent hybridization, which signals that the hybridization occurs primarily between the Ce 4f states in the CeIn_{3} layer and two more three-dimensional bands composed of the Rh 4d and In 5p orbitals in the RhIn_{2} layer. Our results allow us to connect the properties observed at elevated temperatures with the unusual low-temperature properties of this enigmatic heavy fermion compound.

15.
Phys Rev Lett ; 119(2): 026403, 2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28753342

ABSTRACT

By combining bulk sensitive soft-x-ray angular-resolved photoemission spectroscopy and first-principles calculations we explored the bulk electron states of WTe_{2}, a candidate type-II Weyl semimetal featuring a large nonsaturating magnetoresistance. Despite the layered geometry suggesting a two-dimensional electronic structure, we directly observe a three-dimensional electronic dispersion. We report a band dispersion in the reciprocal direction perpendicular to the layers, implying that electrons can also travel coherently when crossing from one layer to the other. The measured Fermi surface is characterized by two well-separated electron and hole pockets at either side of the Γ point, differently from previous more surface sensitive angle-resolved photoemission spectroscopy experiments that additionally found a pronounced quasiparticle weight at the zone center. Moreover, we observe a significant sensitivity of the bulk electronic structure of WTe_{2} around the Fermi level to electronic correlations and renormalizations due to self-energy effects, previously neglected in first-principles descriptions.

16.
Nature ; 546(7660): 627-631, 2017 06 29.
Article in English | MEDLINE | ID: mdl-28628922

ABSTRACT

In quantum field theory, Lorentz invariance leads to three types of fermion-Dirac, Weyl and Majorana. Although the existence of Weyl and Majorana fermions as elementary particles in high-energy physics is debated, all three types of fermion have been proposed to exist as low-energy, long-wavelength quasiparticle excitations in condensed-matter systems. The existence of Dirac and Weyl fermions in condensed-matter systems has been confirmed experimentally, and that of Majorana fermions is supported by various experiments. However, in condensed-matter systems, fermions in crystals are constrained by the symmetries of the 230 crystal space groups rather than by Lorentz invariance, giving rise to the possibility of finding other types of fermionic excitation that have no counterparts in high-energy physics. Here we use angle-resolved photoemission spectroscopy to demonstrate the existence of a triply degenerate point in the electronic structure of crystalline molybdenum phosphide. Quasiparticle excitations near a triply degenerate point are three-component fermions, beyond the conventional Dirac-Weyl-Majorana classification, which attributes Dirac and Weyl fermions to four- and two-fold degenerate points, respectively. We also observe pairs of Weyl points in the bulk electronic structure of the crystal that coexist with the three-component fermions. This material thus represents a platform for studying the interplay between different types of fermions. Our experimental discovery opens up a way of exploring the new physics of unconventional fermions in condensed-matter systems.

17.
Phys Rev Lett ; 118(10): 106406, 2017 Mar 10.
Article in English | MEDLINE | ID: mdl-28339253

ABSTRACT

The Weyl semimetal phase is a recently discovered topological quantum state of matter characterized by the presence of topologically protected degeneracies near the Fermi level. These degeneracies are the source of exotic phenomena, including the realization of chiral Weyl fermions as quasiparticles in the bulk and the formation of Fermi arc states on the surfaces. Here, we demonstrate that these two key signatures show distinct evolutions with the bulk band topology by performing angle-resolved photoemission spectroscopy, supported by first-principles calculations, on transition-metal monophosphides. While Weyl fermion quasiparticles exist only when the chemical potential is located between two saddle points of the Weyl cone features, the Fermi arc states extend in a larger energy scale and are robust across the bulk Lifshitz transitions associated with the recombination of two nontrivial Fermi surfaces enclosing one Weyl point into a single trivial Fermi surface enclosing two Weyl points of opposite chirality. Therefore, in some systems (e.g., NbP), topological Fermi arc states are preserved even if Weyl fermion quasiparticles are absent in the bulk. Our findings not only provide insight into the relationship between the exotic physical phenomena and the intrinsic bulk band topology in Weyl semimetals, but also resolve the apparent puzzle of the different magnetotransport properties observed in TaAs, TaP, and NbP, where the Fermi arc states are similar.

18.
Phys Rev Lett ; 118(8): 086402, 2017 Feb 24.
Article in English | MEDLINE | ID: mdl-28282191

ABSTRACT

Spin- and angle-resolved photoemission spectroscopy is used to reveal that a large spin polarization is observable in the bulk centrosymmetric transition metal dichalcogenide MoS_{2}. It is found that the measured spin polarization can be reversed by changing the handedness of incident circularly polarized light. Calculations based on a three-step model of photoemission show that the valley and layer-locked spin-polarized electronic states can be selectively addressed by circularly polarized light, therefore providing a novel route to probe these hidden spin-polarized states in inversion-symmetric systems as predicted by Zhang et al. [Nat. Phys. 10, 387 (2014).NPAHAX1745-247310.1038/nphys2933].

19.
Phys Rev Lett ; 119(25): 256404, 2017 Dec 22.
Article in English | MEDLINE | ID: mdl-29303315

ABSTRACT

Upon reduction of the film thickness we observe a metal-insulator transition in epitaxially stabilized, spin-orbit-coupled SrIrO_{3} ultrathin films. By comparison of the experimental electronic dispersions with density functional theory at various levels of complexity we identify the leading microscopic mechanisms, i.e., a dimensionality-induced readjustment of octahedral rotations, magnetism, and electronic correlations. The astonishing resemblance of the band structure in the two-dimensional limit to that of bulk Sr_{2}IrO_{4} opens new avenues to unconventional superconductivity by "clean" electron doping through electric field gating.

20.
Phys Rev Lett ; 117(23): 237601, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27982645

ABSTRACT

The complex electronic properties of ZrTe_{5} have recently stimulated in-depth investigations that assigned this material to either a topological insulator or a 3D Dirac semimetal phase. Here we report a comprehensive experimental and theoretical study of both electronic and structural properties of ZrTe_{5}, revealing that the bulk material is a strong topological insulator (STI). By means of angle-resolved photoelectron spectroscopy, we identify at the top of the valence band both a surface and a bulk state. The dispersion of these bands is well captured by ab initio calculations for the STI case, for the specific interlayer distance measured in our x-ray diffraction study. Furthermore, these findings are supported by scanning tunneling spectroscopy revealing the metallic character of the sample surface, thus confirming the strong topological nature of ZrTe_{5}.

SELECTION OF CITATIONS
SEARCH DETAIL
...