Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Alzheimers Dis ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38788066

ABSTRACT

Background: Emerging diagnostic modalities suggest that miRNA profiles within extracellular vesicles (EVs) isolated from peripheral blood specimens may provide a non-invasive diagnostic alternative for dementia and neurodegenerative disorders. Given that EVs confer a protective environment against miRNA enzymatic degradation, the miRNAs enriched in the EV fraction of blood samples could serve as more stable and clinically relevant biomarkers compared to those obtained from serum. Objective: To compare miRNAs isolated from EVs versus serum in blood taken from Alzheimer's disease (AD) dementia patients and control cohorts. Methods: We compared 25 AD patients to 34 individuals who exhibited no cognitive impairments (NCI). Subjects were Singapore residents with Chinese heritage. miRNAs purified from serum versus blood-derived EVs were analyzed for associations with AD dementia and medial temporal atrophy detected by magnetic resonance imaging. Results: Compared to serum-miRNAs, we identified almost twice as many EV-miRNAs associated with AD dementia, and they also correlated more significantly with medial temporal atrophy, a neuroimaging marker of AD-brain pathology. We further developed combination panels of serum-miRNAs and EV-miRNAs with improved performance in identifying AD dementia. Dominant in both panels was miRNA-1290. Conclusions: This data indicates that miRNA profiling from EVs offers diagnostic superiority. This underscores the role of EVs as vectors harboring prognostic biomarkers for neurodegenerative disorders and suggests their potential in yielding novel biomarkers for AD diagnosis.

2.
Basic Res Cardiol ; 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38554187

ABSTRACT

CD40L-CD40-TRAF signaling plays a role in atherosclerosis progression and affects the pathogenesis of coronary heart disease (CHD). We tested the hypothesis that CD40L-CD40-TRAF signaling is a potential therapeutic target in hyperlipidemia, diabetes, and hypertension. In mouse models of hyperlipidemia plus diabetes (db/db mice) or hypertension (1 mg/kg/d angiotensin-II for 7 days), TRAF6 inhibitor treatment (2.5 mg/kg/d for 7 or 14 days) normalized markers of oxidative stress and inflammation. As diabetes and hypertension are important comorbidities aggravating CHD, we explored whether the CD40L-CD40-TRAF signaling cascade and their associated inflammatory pathways are expressed in CHD patients suffering from comorbidities. Therefore, we analyzed vascular bypass material (aorta or internal mammary artery) and plasma from patients with CHD with diabetes and/or hypertension. Our Olink targeted plasma proteomic analysis using the IMMUNO-ONCOLOGY panel revealed a pattern of step-wise increase for 13/92 markers of low-grade inflammation with significant changes. CD40L or CD40 significantly correlated with 38 or 56 other inflammatory targets. In addition, specific gene clusters that correlate with the comorbidities were identified in isolated aortic mRNA of CHD patients through RNA-sequencing. These signaling clusters comprised CD40L-CD40-TRAF, immune system, hemostasis, muscle contraction, metabolism of lipids, developmental biology, and apoptosis. Finally, immunological analysis revealed key markers correlated with comorbidities in CHD patients, such as CD40L, NOX2, CD68, and 3-nitrotyrosine. These data indicate that comorbidities increase inflammatory pathways in CHD, and targeting these pathways will be beneficial in reducing cardiovascular events in CHD patients with comorbidities.

3.
Redox Biol ; 70: 103071, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354629

ABSTRACT

AIMS: We examined the cardiovascular effects of celiac disease (CeD) in a humanized mouse model, with a focus on vascular inflammation, endothelial dysfunction, and oxidative stress. METHODS AND RESULTS: NOD.DQ8 mice genetically predisposed to CeD were subjected to a diet regime and oral gavage to induce the disease (gluten group vs. control). We tested vascular function, confirmed disease indicators, and evaluated inflammation and oxidative stress in various tissues. Plasma proteome profiling was also performed. CeD markers were confirmed in the gluten group, indicating increased blood pressure and impaired vascular relaxation. Pro-inflammatory genes were upregulated in this group, with increased CD11b+ myeloid cell infiltration and oxidative stress parameters observed in aortic and heart tissue. However, heart function remained unaffected. Plasma proteomics suggested the cytokine interleukin-17A (IL-17A) as a link between gut and vascular inflammation. Cardiovascular complications were reversed by adopting a gluten-free diet. CONCLUSION: Our study sheds light in the heightened cardiovascular risk associated with active CeD, revealing a gut-to-cardiovascular inflammatory axis potentially mediated by immune cell infiltration and IL-17A. These findings augment our understanding of the link between CeD and cardiovascular disease providing clinically relevant insight into the underlying mechanism. Furthermore, our discovery that cardiovascular complications can be reversed by a gluten-free diet underscores a critical role for dietary interventions in mitigating cardiovascular risks associated with CeD.


Subject(s)
Celiac Disease , Hypertension , Mice , Animals , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-17/pharmacology , Mice, Inbred NOD , Oxidative Stress , Inflammation , Glutens/pharmacology
4.
Eur J Prev Cardiol ; 30(15): 1554-1568, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37185661

ABSTRACT

AIMS: Environmental stressors such as traffic noise represent a global threat, accounting for 1.6 million healthy life years lost annually in Western Europe. Therefore, the noise-associated health side effects must be effectively prevented or mitigated. Non-pharmacological interventions such as physical activity or a balanced healthy diet are effective due to the activation of the adenosine monophosphate-activated protein kinase (α1AMPK). Here, we investigated for the first time in a murine model of aircraft noise-induced vascular dysfunction the potential protective role of α1AMPK activated via exercise, intermittent fasting, and pharmacological treatment. METHODS AND RESULTS: Wild-type (B6.Cg-Tg(Cdh5-cre)7Mlia/J) mice were exposed to aircraft noise [maximum sound pressure level of 85 dB(A), average sound pressure level of 72 dB(A)] for the last 4 days. The α1AMPK was stimulated by different protocols, including 5-aminoimidazole-4-carboxamide riboside application, voluntary exercise, and intermittent fasting. Four days of aircraft noise exposure produced significant endothelial dysfunction in wild-type mice aorta, mesenteric arteries, and retinal arterioles. This was associated with increased vascular oxidative stress and asymmetric dimethylarginine formation. The α1AMPK activation with all three approaches prevented endothelial dysfunction and vascular oxidative stress development, which was supported by RNA sequencing data. Endothelium-specific α1AMPK knockout markedly aggravated noise-induced vascular damage and caused a loss of mitigation effects by exercise or intermittent fasting. CONCLUSION: Our results demonstrate that endothelial-specific α1AMPK activation by pharmacological stimulation, exercise, and intermittent fasting effectively mitigates noise-induced cardiovascular damage. Future population-based studies need to clinically prove the concept of exercise/fasting-mediated mitigation of transportation noise-associated disease.


Traffic noise, e.g. from aircraft, significantly contributes to an increased risk of cardiovascular or metabolic diseases in the general population by brain-dependent stress reactions leading to higher levels of circulating stress hormones and vasoconstrictors, all of which cause hypertension, oxidative stress, and inflammation. With the present experimental studies, we provide for the first time molecular mechanisms responsible for successful noise mitigation: Physical exercise, intermittent fasting, and pharmacological activation of the adenosine monophosphate-activated protein kinase (AMPK), a metabolic master regulator protein, prevent cardiovascular damage caused by noise exposure, such as hypertension, endothelial dysfunction, and reactive oxygen species formation (e.g. free radicals) and inflammation.These beneficial mitigation manoeuvers are secondary to an activation of the endothelial AMPK, thereby mimicking the antidiabetic drug metformin.


Subject(s)
Endothelium, Vascular , Noise, Transportation , Humans , Mice , Animals , Endothelium, Vascular/metabolism , Oxidative Stress , Noise, Transportation/adverse effects , Fasting , Aircraft , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology
5.
Redox Biol ; 59: 102580, 2023 02.
Article in English | MEDLINE | ID: mdl-36566737

ABSTRACT

Worldwide, up to 8.8 million excess deaths/year have been attributed to air pollution, mainly due to the exposure to fine particulate matter (PM). Traffic-related noise is an additional contributor to global mortality and morbidity. Both health risk factors substantially contribute to cardiovascular, metabolic and neuropsychiatric sequelae. Studies on the combined exposure are rare and urgently needed because of frequent co-occurrence of both risk factors in urban and industrial settings. To study the synergistic effects of PM and noise, we used an exposure system equipped with aerosol generator and loud-speakers, where C57BL/6 mice were acutely exposed for 3d to either ambient PM (NIST particles) and/or noise (aircraft landing and take-off events). The combination of both stressors caused endothelial dysfunction, increased blood pressure, oxidative stress and inflammation. An additive impairment of endothelial function was observed in isolated aortic rings and even more pronounced in cerebral and retinal arterioles. The increase in oxidative stress and inflammation markers together with RNA sequencing data indicate that noise particularly affects the brain and PM the lungs. The combination of both stressors has additive adverse effects on the cardiovascular system that are based on PM-induced systemic inflammation and noise-triggered stress hormone signaling. We demonstrate an additive upregulation of ACE-2 in the lung, suggesting that there may be an increased vulnerability to COVID-19 infection. The data warrant further mechanistic studies to characterize the propagation of primary target tissue damage (lung, brain) to remote organs such as aorta and heart by combined noise and PM exposure.


Subject(s)
COVID-19 , Cardiovascular System , Mice , Animals , Particulate Matter/adverse effects , Mice, Inbred C57BL , Inflammation/chemically induced , Oxidative Stress , Aircraft
6.
Front Pharmacol ; 13: 995061, 2022.
Article in English | MEDLINE | ID: mdl-36267276

ABSTRACT

Cardiovascular diseases (CVD) and cardiovascular risk factors are the leading cause of death in the world today. According to the Global Burden of Disease Study, hypertension together with ischemic heart and cerebrovascular diseases is responsible for approximately 40% of all deaths worldwide. The major pathomechanism underlying almost all CVD is atherosclerosis, an inflammatory disorder of the vascular system. Recent large-scale clinical trials demonstrated that inflammation itself is an independent cardiovascular risk factor. Specific anti-inflammatory therapy could decrease cardiovascular mortality in patients with atherosclerosis (increased markers of inflammation). Inflammation, however, can also be beneficial by conferring so-called resolution, a process that contributes to clearing damaged tissue from cell debris upon cell death and thereby represents an essential step for recovery from, e.g., ischemia/reperfusion damage. Based on these considerations, the present review highlights features of the detrimental inflammatory reactions as well as of the beneficial process of immune cell-triggered resolution. In this context, we discuss the polarization of macrophages to either M1 or M2 phenotype and critically assess the role of the CD40L-CD40-TRAF signaling cascade in atherosclerosis and its potential link to resolution. As CD40L can bind to different cellular receptors, it can initiate a broad range of inflammatory processes that may be detrimental or beneficial. Likewise, the signaling of CD40L downstream of CD40 is mainly determined by activation of TRAF1-6 pathways that again can be detrimental or beneficial. Accordingly, CD40(L)-based therapies may be Janus-faced and require sophisticated fine-tuning in order to promote cardioprotection.

7.
Acta Neurochir (Wien) ; 164(10): 2551-2557, 2022 10.
Article in English | MEDLINE | ID: mdl-35449360

ABSTRACT

OBJECTIVE: Neuroendoscopic procedures inside the ventricular system always bear the risk for an unexpected intraoperative hemorrhage with potentially devastating consequences. The authors present here their experience, and a stage-to-stage guide for the endoscopic management of intraoperative hemorrhages. METHODS: A step-by-step guide for the management to gain control of and stop the bleeding is described including a grading system. More advanced techniques are presented in cases examples. CONCLUSION: Most of intraoperative hemorrhages can be controlled by constant irrigation and coagulation. More advanced techniques can be applied quickly and easily to ensure control of the hemorrhages and avoid the need for a microsurgical conversion.


Subject(s)
Neuroendoscopy , Blood Loss, Surgical , Cerebral Ventricles/surgery , Humans , Neuroendoscopes , Neuroendoscopy/adverse effects , Neuroendoscopy/methods
8.
Front Mol Biosci ; 8: 814921, 2021.
Article in English | MEDLINE | ID: mdl-35174211

ABSTRACT

Transportation noise is recognized as an important cardiovascular risk factor. Key mechanisms are noise-triggered vascular inflammation and oxidative stress with subsequent endothelial dysfunction. Here, we test for adaptation or tolerance mechanisms in mice in response to chronic noise exposure. C57BL/6J mice were exposed to aircraft noise for 0, 4, 7, 14 and 28d at a mean sound pressure level of 72 dB(A) and peak levels of 85 dB(A). Chronic aircraft noise exposure up to 28d caused persistent endothelial dysfunction and elevation of blood pressure. Likewise, reactive oxygen species (ROS) formation as determined by dihydroethidium (DHE) staining and HPLC-based measurement of superoxide formation in the aorta/heart/brain was time-dependently increased by noise. Oxidative burst in the whole blood showed a maximum at 4d or 7d of noise exposure. Increased superoxide formation in the brain was mirrored by a downregulation of neuronal nitric oxide synthase (Nos3) and transcription factor Foxo3 genes, whereas Vcam1 mRNA, a marker for inflammation was upregulated in all noise exposure groups. Induction of a pronounced hearing loss in the mice was excluded by auditory brainstem response audiometry. Endothelial dysfunction and inflammation were present during the entire 28d of aircraft noise exposure. ROS formation gradually increases with ongoing exposure without significant adaptation or tolerance in mice in response to chronic noise stress at moderate levels. These data further illustrate health side effects of long-term noise exposure and further strengthen a consequent implementation of the WHO noise guidelines in order to prevent the development of noise-related future cardiovascular disease.

9.
Eur Radiol ; 30(10): 5525-5532, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32458173

ABSTRACT

OBJECTIVE: The objective was to identify barriers and facilitators to the implementation of artificial intelligence (AI) applications in clinical radiology in The Netherlands. MATERIALS AND METHODS: Using an embedded multiple case study, an exploratory, qualitative research design was followed. Data collection consisted of 24 semi-structured interviews from seven Dutch hospitals. The analysis of barriers and facilitators was guided by the recently published Non-adoption, Abandonment, Scale-up, Spread, and Sustainability (NASSS) framework for new medical technologies in healthcare organizations. RESULTS: Among the most important facilitating factors for implementation were the following: (i) pressure for cost containment in the Dutch healthcare system, (ii) high expectations of AI's potential added value, (iii) presence of hospital-wide innovation strategies, and (iv) presence of a "local champion." Among the most prominent hindering factors were the following: (i) inconsistent technical performance of AI applications, (ii) unstructured implementation processes, (iii) uncertain added value for clinical practice of AI applications, and (iv) large variance in acceptance and trust of direct (the radiologists) and indirect (the referring clinicians) adopters. CONCLUSION: In order for AI applications to contribute to the improvement of the quality and efficiency of clinical radiology, implementation processes need to be carried out in a structured manner, thereby providing evidence on the clinical added value of AI applications. KEY POINTS: • Successful implementation of AI in radiology requires collaboration between radiologists and referring clinicians. • Implementation of AI in radiology is facilitated by the presence of a local champion. • Evidence on the clinical added value of AI in radiology is needed for successful implementation.


Subject(s)
Artificial Intelligence/trends , Radiography/trends , Radiologists , Radiology/trends , Data Collection , Humans , Netherlands , Program Development , Program Evaluation , Qualitative Research
SELECTION OF CITATIONS
SEARCH DETAIL
...