Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Pathol Inform ; 15: 100387, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38984198

ABSTRACT

Over the past decade, artificial intelligence (AI) methods in pathology have advanced substantially. However, integration into routine clinical practice has been slow due to numerous challenges, including technical and regulatory hurdles in translating research results into clinical diagnostic products and the lack of standardized interfaces. The open and vendor-neutral EMPAIA initiative addresses these challenges. Here, we provide an overview of EMPAIA's achievements and lessons learned. EMPAIA integrates various stakeholders of the pathology AI ecosystem, i.e., pathologists, computer scientists, and industry. In close collaboration, we developed technical interoperability standards, recommendations for AI testing and product development, and explainability methods. We implemented the modular and open-source EMPAIA Platform and successfully integrated 14 AI-based image analysis apps from eight different vendors, demonstrating how different apps can use a single standardized interface. We prioritized requirements and evaluated the use of AI in real clinical settings with 14 different pathology laboratories in Europe and Asia. In addition to technical developments, we created a forum for all stakeholders to share information and experiences on digital pathology and AI. Commercial, clinical, and academic stakeholders can now adopt EMPAIA's common open-source interfaces, providing a unique opportunity for large-scale standardization and streamlining of processes. Further efforts are needed to effectively and broadly establish AI assistance in routine laboratory use. To this end, a sustainable infrastructure, the non-profit association EMPAIA International, has been established to continue standardization and support broad implementation and advocacy for an AI-assisted digital pathology future.

3.
Mod Pathol ; 35(12): 1759-1769, 2022 12.
Article in English | MEDLINE | ID: mdl-36088478

ABSTRACT

Artificial intelligence (AI) solutions that automatically extract information from digital histology images have shown great promise for improving pathological diagnosis. Prior to routine use, it is important to evaluate their predictive performance and obtain regulatory approval. This assessment requires appropriate test datasets. However, compiling such datasets is challenging and specific recommendations are missing. A committee of various stakeholders, including commercial AI developers, pathologists, and researchers, discussed key aspects and conducted extensive literature reviews on test datasets in pathology. Here, we summarize the results and derive general recommendations on compiling test datasets. We address several questions: Which and how many images are needed? How to deal with low-prevalence subsets? How can potential bias be detected? How should datasets be reported? What are the regulatory requirements in different countries? The recommendations are intended to help AI developers demonstrate the utility of their products and to help pathologists and regulatory agencies verify reported performance measures. Further research is needed to formulate criteria for sufficiently representative test datasets so that AI solutions can operate with less user intervention and better support diagnostic workflows in the future.


Subject(s)
Artificial Intelligence , Pathology , Humans , Forecasting , Datasets as Topic
4.
Comput Methods Programs Biomed ; 215: 106596, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34968788

ABSTRACT

BACKGROUND AND OBJECTIVE: Artificial intelligence (AI) apps hold great potential to make pathological diagnoses more accurate and time efficient. Widespread use of AI in pathology is hampered by interface incompatibilities between pathology software. We studied the existing interfaces in order to develop the EMPAIA App Interface, an open standard for the integration of pathology AI apps. METHODS: The EMPAIA App Interface relies on widely-used web communication protocols and containerization. It consists of three parts: A standardized format to describe the semantics of an app, a mechanism to deploy and execute apps in computing environments, and a web API through which apps can exchange data with a host application. RESULTS: Five commercial AI app manufacturers successfully adapted their products to the EMPAIA App Interface and helped improve it with their feedback. Open source tools facilitate the adoption of the interface by providing reusable data access and scheduling functionality and enabling automatic validation of app compliance. CONCLUSIONS: Existing AI apps and pathology software can be adapted to the EMPAIA App Interface with little effort. It is a viable alternative to the proprietary interfaces of current software. If enough vendors join in, the EMPAIA App Interface can help to advance the use of AI in pathology.


Subject(s)
Artificial Intelligence , Mobile Applications , Communication , Feedback , Semantics
SELECTION OF CITATIONS
SEARCH DETAIL
...