Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 930: 172660, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38649037

ABSTRACT

Hexachlorocyclohexanes (HCH) isomers and their transformation products, such as chlorobenzenes (ClB), generate severe and persistent environmental problems at many sites worldwide. The Wetland technology employing oxidation-reduction, biosorption, biodegradation and phytoremediation methods can sufficiently treat HCH-contaminated water. The treatment process is inherently natural and requires no supplementary chemicals or energy. The prototype with a capacity of 3 L/s was installed at Hajek quarry spoil heap (CZ), to optimize the technology on a full scale. The system is fed by drainage water with an average concentration of HCH 129 µg/L, ClB 640 µg/L and chlorophenols (ClPh) of 16 µg/L. The system was tested in two years of operation, regularly monitored for HCH, ClB and ClPh, and maintained to improve its efficiency. The assessment was not only for environmental effects but also for socio and economic indicators. During the operation, the removal efficiency of HCH ranged from 53.5 % to 96.9 % (83.9 % on average) depending on the flow rate. Removal efficiency was not uniform for individual HCH isomers but exhibited the trend: α = Î³ = Î´ > ß = Îµ. The improved water quality was reflected in a biodiversity increase expressed by a number of phytobenthos (diatoms) species, a common biomarker of aquatic environment quality. The Wetland outranked the conventional WWTP in 10 out of the 15 general categories, and it is the most relevant scenario from the socio, environmental, and economic aspects.


Subject(s)
Hexachlorocyclohexane , Water Pollutants, Chemical , Wetlands , Water Pollutants, Chemical/analysis , Hexachlorocyclohexane/analysis , Waste Disposal, Fluid/methods , Biodegradation, Environmental , Water Purification/methods
2.
Water Sci Technol ; 88(12): 3095-3109, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38154796

ABSTRACT

The hexachlorocyclohexane isomers (HCH) are long-banned pesticides. Even though their use has been prohibited for decades, their presence in the environment is still reported worldwide. Wetland + is a registered trademark of the remedial treatment technology consisting of an aerobic sedimentary tank, a permeable reactive barrier, a biosorption system, and an aerobic wetland. This proven method combines a reductive treatment known from PRBs with the natural wetland self-cleaning processes. The average efficiency of the system is 96.8% for chlorobenzenes (ClB) and 81.7% for HCH, during the first 12 months of the system operation. The presence of the genes encoding enzymes involved in the degradation of the HCH compounds indicates that the removal of HCH and ClB occurs not only by chemical removal but also through aerobic and anaerobic combining biodegradation. Changes in abundance and the composition of the diatom community were found to be suitable indicators of the water quality and of the impact of the Wetland + operation on the water ecosystem. The system's annual operation exhibited a markedly higher number of diatom species in the closing profiles of the Ostrovský Creek, the Wetland + effluent recipient.


Subject(s)
Ecosystem , Hexachlorocyclohexane , Hexachlorocyclohexane/chemistry , Hexachlorocyclohexane/metabolism , Wetlands , Biodegradation, Environmental , Biodiversity
3.
Environ Sci Pollut Res Int ; 24(15): 13262-13283, 2017 May.
Article in English | MEDLINE | ID: mdl-28378313

ABSTRACT

Contamination by chloroethenes has a severe negative effect on both the environment and human health. This has prompted intensive remediation activity in recent years, along with research into the efficacy of natural microbial communities for degrading toxic chloroethenes into less harmful compounds. Microbial degradation of chloroethenes can take place either through anaerobic organohalide respiration, where chloroethenes serve as electron acceptors; anaerobic and aerobic metabolic degradation, where chloroethenes are used as electron donors; or anaerobic and aerobic co-metabolic degradation, with chloroethene degradation occurring as a by-product during microbial metabolism of other growth substrates, without energy or carbon benefit. Recent research has focused on optimising these natural processes to serve as effective bioremediation technologies, with particular emphasis on (a) the diversity and role of bacterial groups involved in dechlorination microbial processes, and (b) detection of bacterial enzymes and genes connected with dehalogenation activity. In this review, we summarise the different mechanisms of chloroethene bacterial degradation suitable for bioremediation and provide a list of dechlorinating bacteria. We also provide an up-to-date summary of primers available for detecting functional genes in anaerobic and aerobic bacteria degrading chloroethenes metabolically or co-metabolically.


Subject(s)
Biodegradation, Environmental , Vinyl Chloride/metabolism , Bacteria/metabolism , Bacteria, Aerobic/metabolism , Halogenation , Tetrachloroethylene/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...